matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSatz von Picard-Lindelöf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Satz von Picard-Lindelöf
Satz von Picard-Lindelöf < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Picard-Lindelöf: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:26 Do 05.11.2009
Autor: raubkaetzchen

Aufgabe
Beweisen sie mittels weißingerschen Fixpunktsatz den Satz von Picard-Lindelöf.
Dazu wird wieder das AWP x'=f(x), x(0)=a für eine L-stetige Fkt.
f: [mm] \IR^{n} [/mm] -> [mm] \IR^{n} [/mm] auf einem Intervall I=(-T,T) betrachtet.

Weisen sie dazu insbesondere nach, dass die n-ten Potenzen des Integraloperators G: [mm] C(I,\IR^{n})->C(I,\IR^{n}), [/mm]
G(x)(t)=a + [mm] \integral_{0}^{t}{f(x(s)) ds} [/mm]
die L-Konstante [mm] \bruch{(LT)^{n}}{n!} [/mm] besitzen.

Hallo alle zusammen.

Der Beweis dieses Satzes soll mit dem Weißingerschen Fixpunktsatz bewiesen werden.

Ich muss also einen Fixpunkt von G finden, der dann natürlich Lösung des AWP wäre.


Ich habe versucht zu zeigen, dass die n-te potenz des integraloperators eben diese L-Konstante besitzt.
Leider ist mir das bisher nicht geglückt.
Ich habe versucht dies durch vollständige induktion zu machen, nur ergibt sich bei mir das Problem mit dem "n!" im nenner.

Also induktionsstart für n=0 und n=1 klappt.
Nur ist meine Abschätzung gröber, d.h. ohne das n!. wie kriege ich das n! rein?



Wäre nett wenn ihr mir helfen könntet

Gruß

        
Bezug
Satz von Picard-Lindelöf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 07.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]