matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Statistik (Anwendungen)" - Schätzer
Schätzer < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzer: Maximum-Likelihood-Schätzer
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 01.01.2008
Autor: jumape

Aufgabe
Seien [mm] (X_i)_{i\in\IN} [/mm] unabhängig und Poissonverteilt [mm] P_\lambda. [/mm] Bestimmen Sie den Maximum-Likelihood-schätzer für [mm] \lambda. [/mm]

Also wenn ich Maximum-Likelihood jetzt richtig verstanden habe muss ich den ln auf die Funktion schicken, sie dann nach [mm] \lambda [/mm] ableiten und 0 setzen.
Ich habe allerdings ein Problem damit, dass das Produkt nicht endlich ist.
Mein Ansatz wäre:
F(k)= [mm] e^{-\lambda} \bruch {\lambda^k}{k!} [/mm]
nun wende ich den ln darauf an und erhalte:
[mm] -\lambda+k ln\lambda [/mm] - ln(k!)
dies leite ich nach [mm] \lambda [/mm] ab und erhalte:
[mm] -1+k\bruch{1}{\lambda} [/mm]
Wenn ich dies 0 setze bekomme ich für [mm] \lambda: [/mm]
[mm] \lambda=k [/mm]

Es wäre nett wenn das mal jemand kommentieren könnte.

        
Bezug
Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Di 01.01.2008
Autor: Blech


> Seien [mm](X_i)_{i\in\IN}[/mm] unabhängig und Poissonverteilt
> [mm]P_\lambda.[/mm] Bestimmen Sie den Maximum-Likelihood-schätzer
> für [mm]\lambda.[/mm]
>  Also wenn ich Maximum-Likelihood jetzt richtig verstanden
> habe muss ich den ln auf die Funktion schicken, sie dann
> nach [mm]\lambda[/mm] ableiten und 0 setzen.

Nein!

Das ist nur etwas Mechanik, mit der man oft weiterkommt. ML heißt, Du nimmst als Schätzer für den gesuchten Parameter den Wert, für den die Wahrscheinlichkeit, daß Du Deine gegebene Stichprobe ziehst, am größten ist.

Und das machen wir jetzt:

Wenn wir n unabhängige [mm] $P_\lambda$ [/mm] verteilte ZV [mm] X_i [/mm] haben, dann ist die Wahrscheinlichkeit, für ein bestimmtes Ergebnis [mm] $(k_1,\dots,k_n)\in\IN_0$: [/mm]

[mm] $P_\lambda ((X_1,\dots,X_n)=(k_1,\dots,k_n))=\produkt_{i=1}^{n}P_\lambda (X_i=k_i)$, [/mm] da die ZV unabhängig sind.

Damit haben wir:
[mm] $P_\lambda((X_1,\dots,X_n)=(k_1,\dots,k_n))=\produkt_{i=1}^{n} e^{-\lambda}\frac{\lambda^{k_i}}{k_i!}=e^{-n\lambda} \lambda^{n\overline{k}}\produkt_{i=1}^{n} \frac{1}{k_i!}$ [/mm]
wobei [mm] $\overline{k}$ [/mm] das arithmetische Mittel der [mm] $k_i$ [/mm] ist.


Jetzt ziehen wir eine Stichprobe, [mm] $h_1,\dots,h_n$, [/mm] für die wir den MLE bestimmen wollen.
D.h. wir suchen das [mm] $\lambda$, [/mm] für das [mm] $P_\lambda((X_1,\dots,X_n)=(h_1,\dots,h_n))$ [/mm] maximal wird.

Da das eine Funktion von [mm] $\lambda$ [/mm] ist und die [mm] $h_i$ [/mm] die Parameter sind, ändern wir die Notation. Wir haben die Likelihood-Funktion
[mm] $L(h_1,\dots,h_n;\lambda)=e^{-n\lambda} \lambda^{n\overline{h}}\produkt_{i=1}^{n} \frac{1}{h_i!}$ [/mm]
und suchen das Maximum in Abhängigkeit von [mm] $\lambda$. [/mm]

Dafür können wir den Logarithmus nehmen (macht hier kaum einen Unterschied):
[mm] $l(h_1,\dots,h_n;\lambda)=-n\lambda+n\overline{h}\ln\lambda [/mm] + [mm] \ln\left(\produkt_{i=1}^{n} \frac{1}{h_i!}\right)$ [/mm]

Ableiten und gleich 0 setzen:
[mm] $\frac{d\ l}{d\lambda}=-n+\frac{n\overline{h}}{\lambda}=0$ [/mm]
[mm] $\Rightarrow \lambda=\overline{h}$ [/mm]

Die zweite Ableitung ist kleiner 0, d.h. es ist ein Maximum.

Damit ist der MLE für die Intensität einer Poissonverteilung einfach das Stichprobenmittel

> [snip]
> Es wäre nett wenn das mal jemand kommentieren könnte.

Handwerklich machst Du das meiste richtig. Aber weil Du nur die Mechanik kennst, beginnst Du mit der falschen Funktion und kannst das Ergebnis nicht interpretieren. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]