matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchaetzer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Schaetzer
Schaetzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schaetzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Di 16.09.2008
Autor: zu1u

Aufgabe
Die Zufallsvariablen X1, ...Xn seien unabh. ident. normalverteilt mit bekanntem Erwartungswert [mm] \mu0 [/mm] und unbekannter Varianz, also [mm] N(\mu0, \delta^2) [/mm] verteilt mit [mm] \delta^2 [/mm] unbekannt.

Zeigen sie dass Tn(X1,...,Xn) = 1/n [mm] \summe_{i=1}^{n} (Xi-\mu0)^2 [/mm] ein erwartungstreuer Schaetzer fuer die Varianz t(o) = o = [mm] \delta^2ist. [/mm]

ich weiss das E(Tn(X1,..,Xn)) = t(o) = [mm] \delta^2 [/mm] gelten muss damit der Schaetzer erwartungstreu ist.

Ich finde aber keinen Weg das zu zeigen. Habe auch keinen richtigen Ansatz... nur E(1/n [mm] \summe_{i=1}^{n} (Xi-\mu0)^2) [/mm] = ... ?


konnte leider einige Symbole die normal verwendet werden hier nicht finden. Hoffe es ist verstaendlich so.

danke

        
Bezug
Schaetzer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Di 16.09.2008
Autor: luis52

Moin zu1u,

veruch das Folgende nachzuvollziehen:

[mm] \begin{matrix} \operatorname{E}[1/n \summe_{i=1}^{n} (X_i-\mu_0)^2] &=&1/n \summe_{i=1}^{n} \operatorname{E}[(X_i-\mu_0)^2] \\ &=&1/n \summe_{i=1}^{n} \sigma^2 \\ &=& \sigma^2 \end{matrix} [/mm]



vg Luis
            

Bezug
                
Bezug
Schaetzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Di 16.09.2008
Autor: zu1u

danke ich glaub ich habs geschnallt ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]