matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchätzer Gleichverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Schätzer Gleichverteilung
Schätzer Gleichverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzer Gleichverteilung: Tipp
Status: (Frage) beantwortet Status 
Datum: 01:44 Do 16.12.2010
Autor: Steffen

Aufgabe
Seien [mm] X_i, [/mm] i=1,...,n, unabhängig und gleichverteilt auf [mm] (a-\bruch{1}{2}, a+\bruch{1}{2}). [/mm]

Zeigen Sie, dass [mm] T=\bruch{1}{2}(\max_{1\le i \le n}X_i+\min_{1\le i \le n}X_i) [/mm]
ein erwartungstreuer Schätzer für t(a)=a ist. Ist er konsistent?

Hinweis: Beachten Sie die Verteilungssymmetrie der [mm] X_i. [/mm]

Hallo liebes Forum,

Zur Erwartungstreue muss ich ja prüfen, ob ET=a ist.

[mm] ET=E\bruch{1}{2}(\max_{1\le i \le n}X_i+\min_{1\le i \le n}X_i)=\bruch{1}{2}(E\max_{1\le i \le n}X_i+E\min_{1\le i \le n}X_i). [/mm]

Ich muss also [mm] E\max_{1\le i \le n}X_i [/mm] und [mm] E\min_{1\le i \le n}X_i [/mm] berechnen. Ich kenne zwar die Dichte und Verteilungsfunktion von den [mm] \max_{1\le i \le n}X_i [/mm] und [mm] \min_{1\le i \le n}X_i) [/mm] (die mussten wir in einer früheren Übungsaufgabe schon mal berechnen), aber wenn ich darüber den Erwartungs berechne lande ich irgendwie in einer sehr komplizierten Rechnung.
Geht das auch einfacher? Ich habe den Hinweis nicht genau verstanden. Mit Verteilungssymmetrie ist gemeint, dass die [mm] X_i [/mm] symmetrisch um a verteilt sind oder? Aber wie kann ich das hier ausnutzen?



Nun zur Konsistenz:
Es müsste ja gelten: [mm] T\to [/mm] a in Wahrscheinlichkeit, also [mm] P(|T-a|>\varepsilon)\to [/mm] 0 für alle [mm] \varepsilon>0. [/mm]

[mm] P(|T-a|>\varepsilon)=P(|\bruch{1}{2}(\max_{1\le i \le n}X_i+\min_{1\le i \le n}X_i)-a|>\varepsilon) [/mm]

Aber ich weiß leider nicht wie ich hier weiterkomme.

Ich würde mich sehr freuen wenn mir jemand weiterhelfen könnte.

Viele Grüße,
Steffen

        
Bezug
Schätzer Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Do 16.12.2010
Autor: luis52

Moin Steffen,

hier einige Tipps: Du kannst [mm] $X_i$ [/mm] auffassen als eine Lineartransformation einer im Intervall (0,1) gleichverteilten Variablen [mm] $U_i$. [/mm] Es gibt Formeln fuer die Erwartungswerte, die Varianzen und die Kovarianzen der Ordnungsstatistiken aus einer (0,1)-Gleichverteilung. Tummle dich mal im Internet. []Das hier ist ein Anfang.

vg Luis

Bezug
                
Bezug
Schätzer Gleichverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Sa 18.12.2010
Autor: Steffen

Hallo Luis,

Vielen Dank für deinen Tipp. Ich habe ehrlich gesagt etwas länger gebraucht um zu verstehen was du meinst. Aber ich denke, dass ich bei der Erwartungstreue jetzt deutlich weiter gekommen bin:

Ich betrachte die [mm] X_i [/mm] für a=1/2. Dann erhalte ich
[mm] E\max_{1\le i \le n}X_i=n/(n+1) [/mm] und
[mm] E\min_{1\le i \le n}X_i=1/(n+1). [/mm]

Also gilt für beliebiges a:
[mm] E\max_{1\le i \le n}X_i=a-0,5+n/(n+1) [/mm] und
[mm] E\min_{1\le i \le n}X_i=a-0.5+(1/n+1) [/mm]

Daraus ergibt sich dann ET=a und damit Erwartungstreue.

Muss ich die Lineartransformation noch weiter begründen? Es ist eigentlich klar, aber eine formale Begründung fällt mir schwer.



Bei der Konsistenz bin ich leider immer noch nicht weitergekommen. Kannst du mir da bitte einen weiteren Tipp oder einen Ansatz geben? Ich hab wirklich schon sehr lange drüber nachgedacht.


Viele Grüße,
Steffen

Bezug
                        
Bezug
Schätzer Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Sa 18.12.2010
Autor: luis52


> Hallo Luis,
>
> Vielen Dank für deinen Tipp. Ich habe ehrlich gesagt etwas
> länger gebraucht um zu verstehen was du meinst. Aber ich
> denke, dass ich bei der Erwartungstreue jetzt deutlich
> weiter gekommen bin:
>
> Ich betrachte die [mm]X_i[/mm] für a=1/2. Dann erhalte ich
> [mm]E\max_{1\le i \le n}X_i=n/(n+1)[/mm] und
> [mm]E\min_{1\le i \le n}X_i=1/(n+1).[/mm]
>  
> Also gilt für beliebiges a:
> [mm]E\max_{1\le i \le n}X_i=a-0,5+n/(n+1)[/mm] und
>  [mm]E\min_{1\le i \le n}X_i=a-0.5+(1/n+1)[/mm]
>  
> Daraus ergibt sich dann ET=a und damit Erwartungstreue.

Prima.

>
> Muss ich die Lineartransformation noch weiter begründen?
> Es ist eigentlich klar, aber eine formale Begründung
> fällt mir schwer.

Nein, ist klar.

>
>
>
> Bei der Konsistenz bin ich leider immer noch nicht
> weitergekommen. Kannst du mir da bitte einen weiteren Tipp
> oder einen Ansatz geben? Ich hab wirklich schon sehr lange
> drüber nachgedacht.

Loesen wir uns mal von dem Notationsoverkill: Sei $U_$ bzw. $V_$ das Minumum bzw. das Maximum. Du musst zeigen, dass Varianz von $(U+V)/2_$ gegen Null konvergiert. Es gilt aber [mm] $\mathrm{Var}[(U+V)/2=(\mathrm{Var}[U]+\mathrm{Var}[V]+2\mathrm{Cov}[U,V])/4$. [/mm] In der o.g. Quelle findest Formeln fuer die Varianzen. Du musst noch nach [mm] $\mathrm{Cov}[U,V]$ [/mm] fahnden.

vg Luis



Bezug
                                
Bezug
Schätzer Gleichverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 So 19.12.2010
Autor: Steffen

Hallo Luis,

Warum geht es um die Varianz?
Ich muss zeigen, dass [mm] P(|T-a|>\varepsilon) [/mm] gegen 0 konvergiert.

Wegen der Erwartungstreue weiß ich ja jetzt, dass [mm] P(|T-a|>\varepsilon)=P(|T-ET|>\varepsilon) [/mm] ist. Aber für die Varianz fehlt doch noch das Quadrat. Oder ist die Aussage äquivalent?

VG, Steffen

Bezug
                                        
Bezug
Schätzer Gleichverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 So 19.12.2010
Autor: luis52


> Hallo Luis,
>
> Warum geht es um die Varianz?
> Ich muss zeigen, dass [mm]P(|T-a|>\varepsilon)[/mm] gegen 0
> konvergiert.
>
> Wegen der Erwartungstreue weiß ich ja jetzt, dass
> [mm]P(|T-a|>\varepsilon)=P(|T-ET|>\varepsilon)[/mm] ist. Aber für
> die Varianz fehlt doch noch das Quadrat. Oder ist die
> Aussage äquivalent?
>  
> VG, Steffen

Nicht aequivalent, nur ist es hinreichend, [mm] $\mathrm{Var}[U+V]\to0$ [/mm] fuer [mm] $n\to\infty$ [/mm] zu zeigen, siehe []hier, Seite 279. Eine Aussage ueber die Verteilung von $U+V_$ zu treffen ist vermutlich haarig.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]