Schätzvarianz < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:07 So 04.12.2011 | Autor: | MattiJo |
Aufgabe | Die Verteilung [mm] P_{\Theta} [/mm] von Stichprobenvariablen [mm] X_1, [/mm] ... [mm] ,X_n [/mm] sei abhängig vom Parameter [mm] \Theta \in \IR. [/mm] Die Schätzer [mm] \overline{\Theta_1} [/mm] = [mm] \overline{\Theta_1}(X_1, [/mm] ... [mm] X_n), [/mm] ... [mm] ,\overline{\Theta_k} [/mm] = [mm] \overline{\Theta_k}(X_1 [/mm] , ... [mm] ,X_n) [/mm] seien erwartungstreu für [mm] \Theta, [/mm] wobei die Schätzvarianzen 0 < Var [mm] \overline{\Theta_i} [/mm] = [mm] \sigma_i^2 [/mm] < [mm] \infty, [/mm] i = 1, ... ,k, unabhängig von [mm] \Theta [/mm] und bekannt seien. Außerdem gelte [mm] Cov(\overline{\Theta_i}, \overline{\Theta_j}) [/mm] = 0, für i [mm] \not= [/mm] j.
a) Bestimmen Sie die Varianz des Schätzers [mm] \overline{\Theta^{\*}} (X_1, [/mm] ... [mm] ,X_n) [/mm] = [mm] \bruch{\summe_{i=1}^{k} (\overline{\Theta_i}/\sigma_i^2)}{\summe_{i=1}^{k} (1/\sigma_i^2)}
[/mm]
b) Zeigen Sie, dass der Schätzer [mm] \overline{\Theta^{\*}} (X_1, [/mm] ... [mm] ,X_n) [/mm] die kleinste Varianz unter allen erwartungstreuen Schätzern der Form [mm] \summe_{i=1}^{k} c_i \overline{\Theta_i} [/mm] besitzt. |
Hallo,
ich hänge hier eigentlich schon bei der a) fest. Meine einzelnen Varianzen sind ja als bekannt vorgegeben. Aber was mache ich mit den Schätzern?
Warum hat der Schätzer dann die kleinste Varianz? (b)
Vielen Dank im Voraus!
Matti
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:43 So 04.12.2011 | Autor: | luis52 |
Moin,
wie berechnet man denn die Varianz einer Summe von Zufallsvariablen? Schau mal hier, Formel (5).
vg Luis
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:24 Mo 05.12.2011 | Autor: | MattiJo |
Okay, danke mal für den Hinweis. Jetzt aber mal zum Verständnis: Die Varianz meiner Stichprobenvariablen ist doch [mm] \bruch{1}{n-1}\summe_{i=1}^{n}(x_i [/mm] - [mm] \overline{x})^2. [/mm] Kann ich jetzt die Varianz für die Schätzer [mm] \Theta_1 [/mm] ... [mm] \Theta_n [/mm] mit der Formel (5), die du mir gezeigt hast berechnen? Oder gilt das nur für die Summe der Stichprobenvariablen? Und wie komme ich dann auf die Varianz des Schätzers [mm] \Theta^* [/mm] , die ja letzlich gesucht ist? Die Zusammenhänge sind mir noch nicht klar!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:12 Mo 05.12.2011 | Autor: | luis52 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Moin,
du musst $\operatorname{Var}\left[\bruch{\summe_{i=1}^{k} (\overline{\Theta_i}/\sigma_i^2)}{\summe_{i=1}^{k} (1/\sigma_i^2)}\right] =\left[\frac{1}{{\summe_{i=1}^{k} (1/\sigma_i^2)}\right]^2\summe_{i=1}^{k}\frac{\operatorname{Var}[\overline{\Theta_i}]}{\sigma_i^2}$ berechnen. Beachte, dass die Summanden unkorreliert sind.
vg Luis
|
|
|
|