matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Scheibenwischer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Scheibenwischer
Scheibenwischer < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scheibenwischer: Fläche
Status: (Frage) beantwortet Status 
Datum: 16:50 So 24.08.2008
Autor: SwEeT-AnGeLL

Aufgabe
Der Scheibenwischer eines PKW macht Ausschläge von 140°. Der wischende Gummistreifen ist 50cm lang udn sein unteres Ende 20cm vom Drehpunkt entfernt. Wie groß ist die Fläche die der Wischer bestreicht???  

hallo wie berechnet am den diese aufgabe am besten Luisa

        
Bezug
Scheibenwischer: Zwei Kreisausschnitte
Status: (Antwort) fertig Status 
Datum: 16:57 So 24.08.2008
Autor: Infinit

Hallo Luisa,
stelle Dir hier einfach zwei Kreisauschnitte vor mit unterschiedlichen Radien. Der größere Kreis hat einen Radius von 20 cm + 50 cm, der kleinere nur von 20 cm. Berechne nun für beide Kreise die überstrichene Fläche und ziehe die kleinere Fläche von der größeren ab. Was übrig bleibt, ist die Fläche, die der Wischer überstreicht.
VG,
Infinit


Bezug
                
Bezug
Scheibenwischer: kreis
Status: (Frage) beantwortet Status 
Datum: 17:15 So 24.08.2008
Autor: SwEeT-AnGeLL

Aufgabe
also beträgt der radius des großen kreises 70 cm und der des kelineren 20 cm aber wie soll cih den da die fläche ausrechenen so???

A=pi*70
A= 219,9cm

A=pi* 20
A=62,8cm

219,9cm- 62,8cm = 157,1cm  

stimmt es ??? Luisa

Bezug
                        
Bezug
Scheibenwischer: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 So 24.08.2008
Autor: MathePower

Hallo SwEeT-AnGeLL,

> also beträgt der radius des großen kreises 70 cm und der
> des kelineren 20 cm aber wie soll cih den da die fläche
> ausrechenen so???
>  
> A=pi*70
>  A= 219,9cm
>  
> A=pi* 20
>  A=62,8cm
>  
> 219,9cm- 62,8cm = 157,1cm
> stimmt es ??? Luisa

Die Formel für die Kreisfläche lautet: [mm]A_{Kreis}=\pi*r^{2}[/mm]

Außerdem überstreicht der Wischer einen Winkel von [mm]140^{\circ}[/mm]

Daher ist die Fläche nicht die Kreisfläche, sondern nur ein Teil.

Gruß
MathePower

Bezug
                                
Bezug
Scheibenwischer: kreis
Status: (Frage) beantwortet Status 
Datum: 17:30 So 24.08.2008
Autor: SwEeT-AnGeLL

Aufgabe
pi*70²
= 15393,804

20²=
1256,6

= 14137,204

So?? was soll ich mit den 140° machen????

Bezug
                                        
Bezug
Scheibenwischer: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 So 24.08.2008
Autor: MathePower

Hallo SwEeT-AnGeL,

> pi*70²
>  = 15393,804


[mm]\pi*70^{2}=4900 \pi [/mm]


>  
> 20²=
>  1256,6e


[mm]\pi*20^{2}=400 \pi [/mm]


>  
> = 14137,204


[mm]\pi*\left(70^{2}-20^{2}\right)=4500 \pi [/mm]


>  So?? was soll ich mit den 140° machen????


Der Wischer überstreicht ja nur [mm]140^{\circ}[/mm].

Demzufolge mußt Du die Fläche berechnen, die bei [mm]140^{\circ}[/mm] überstrichen wird.

Die gesamte Fläche des Kreisringes ist zur gesuchen Fläche ins Verhältnis zu setzen.

Auch hier sei angemerkt, Zwischenergebnisse sind exakt zu berechnen. Das Endergebnis kann dann entsprechend gerundet werden.

Gruß
MathePower

Bezug
                                                
Bezug
Scheibenwischer: kreis
Status: (Frage) beantwortet Status 
Datum: 17:56 So 24.08.2008
Autor: SwEeT-AnGeLL

also muss ichdas ergebnis *140° nehmen oder???

Bezug
                                                        
Bezug
Scheibenwischer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 So 24.08.2008
Autor: MathePower

Hallo SwEeT-AnGeLL,

> also muss ichdas ergebnis *140° nehmen oder???

Nein.

Die Gesamtfläche, die Du heraus bekommen hast entspricht ja dem Vollwinkel ([mm]360^{\circ}[/mm]). Um die überstrichene Fläche für den Winkel von [mm]140^{\circ}[/mm] mußt Du diese Gleichung

[mm]\bruch{A_{360}}{A_{140}}=\bruch{360}{140}[/mm]

nach [mm]A_{140}[/mm] auflösen.

[mm]A_{360}[/mm] ist die Fläche des Kreisringes.

[mm]A_{140}[/mm] ist daher die Fläche , wenn der Kreisring zu [mm]140^{\circ}[/mm] überstrichen wird.


Gruss
MathePower

Bezug
                                                                
Bezug
Scheibenwischer: kreis
Status: (Frage) beantwortet Status 
Datum: 18:21 So 24.08.2008
Autor: SwEeT-AnGeLL

Aufgabe
360/140
= 18/7

und nun???

Bezug
                                                                        
Bezug
Scheibenwischer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 So 24.08.2008
Autor: MathePower

Hallo SwEeT-AnGeLL,

> 360/140

>  = 18/7
>  und nun???

Für die Fläche des Kreisringes hast Du

[mm]14137,204 \approx 4500 \pi[/mm]

heraus.

Dies setzt Du für [mm]A_{360}[/mm] in die Gleichung

[mm]\bruch{A_{360}}{A_{140}}=\bruch{360}{140}[/mm]

ein.

Dann erhältst Du:

[mm]\bruch{4500 \pi}{A_{140}}=\bruch{360}{140}[/mm]

Diese Gleichung jetzt nur noch nach [mm]A_{140}[/mm] auflösen.

Gruß
MathePower

Bezug
                                                                                
Bezug
Scheibenwischer: kreis
Status: (Frage) beantwortet Status 
Datum: 18:32 So 24.08.2008
Autor: SwEeT-AnGeLL

wie löst man sowas den auf ??? Luisa

Bezug
                                                                                        
Bezug
Scheibenwischer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 So 24.08.2008
Autor: MathePower

Hallo

> wie löst man sowas den auf ??? Luisa

Multipliziere die Gleichung

[mm] \bruch{4500 \pi}{A_{140}}=\bruch{360}{140} [/mm]

mit [mm]A_{140}[/mm] durch:

[mm] \bruch{4500 \pi}{A_{140}}*\red{A_{140}}=\bruch{360}{140}*\red{A_{140}} [/mm]

Dividiere dann diese Gleichung durch [mm]\bruch{360}{140}[/mm]:

[mm] \bruch{4500 \pi}{A_{140}}*\red{A_{140}}*\blue{\bruch{1}{\bruch{360}{140}}}=\bruch{360}{140}*\red{A_{140}}*\blue{\bruch{1}{\bruch{360}{140}}} [/mm]

Gruß
MathePower

Bezug
                                                                                                
Bezug
Scheibenwischer: kreis
Status: (Frage) beantwortet Status 
Datum: 18:46 So 24.08.2008
Autor: SwEeT-AnGeLL

dann bekomme ich 5497, 787144 raus und 132,22222222...

Bezug
                                                                                                        
Bezug
Scheibenwischer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 So 24.08.2008
Autor: Steffi21

Hallo,
5497,8 [mm] cm^{2} [/mm] ist die Fläche des Kreisringes, achte auch auf eine sinnvolle Genauigkeit, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]