matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Scheitelpunkt von Parabeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Scheitelpunkt von Parabeln
Scheitelpunkt von Parabeln < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scheitelpunkt von Parabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 08.11.2011
Autor: Fee

Hallöchen :)

Ich screib bald eine Mathearbeit und ich weiß nicht, wie man den Scheitelpunkt von Parabeln berechnet...nicht nur von Normalparabeln.

Könnt Ihr mir weiterhelfen ?

Liebe Grüße. eure Fee ;)

        
Bezug
Scheitelpunkt von Parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Di 08.11.2011
Autor: schachuzipus

Hallo Fee,


> Hallöchen :)
>  
> Ich screib bald eine Mathearbeit und ich weiß nicht, wie
> man den Scheitelpunkt von Parabeln berechnet...nicht nur
> von Normalparabeln.
>  
> Könnt Ihr mir weiterhelfen ?

Nun, allg. hat eine Parabel die Form [mm]f(x)=ax^2+bx+c[/mm]

Das kannst du in die Form [mm]f(x)=a\cdot{}(x-d)^2+e[/mm] bringen, wobei dann der Scheitelpunkt [mm]S=(d/e)[/mm] ist.

Das kannst du mit quadratischer Ergänzung hinbekommen:

[mm]f(x)=ax^2+bx+c[/mm]

Erstmal [mm]a[/mm] ausklammern:

[mm]=a\cdot{}\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)[/mm]

Nun in der Klammer quadr. Ergänzung, Schritt für Schritt

[mm]=a\cdot{}\left(x^2+\red{2}\cdot{}\frac{b}{\red{2}a}x+\frac{c}{a}\right)[/mm]

[mm]=a\cdot{}\left(x^2+2\cdot{}\frac{b}{2a}x \ \blue{+\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2}+\frac{c}{a}\right)[/mm]

Nun hast du für die ersten 3 Summanden in der Klammer die 1.binomische Formel:

[mm]=a\cdot{}\left[\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a^2}+\frac{c}{a}\right][/mm]

[mm]=a\cdot{}\left[\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a^2}\right][/mm]

[mm]=a\cdot{}\left(x+\frac{b}{2a}\right)^2 \ + \ a\cdot{}\frac{4ac-b^2}{4a^2}[/mm]

[mm]=a\cdot{}\left(x+\frac{b}{2a}\right)^2 \ + \ \frac{4ac-b^2}{4a}[/mm]

Ein Vergleich mit der Form oben [mm]f(x)=a\cdot{}(x-d)^2+e[/mm] ergibt:

[mm]d=-\frac{b}{2a}[/mm] und [mm]e=\frac{4ac-b^2}{4a}[/mm]

Also ist der Scheitelpunkt [mm]S=\left(-\frac{b}{2a} \ / \ \frac{4ac-b^2}{4a}\right)[/mm]

Aber merke dir besser nicht diese allg. Formel, sondern die Herleitung, insbesondere die quadratische Ergänzung.

Hab's extra ausführlich gemacht ;-)

Gruß

schachuzipus

>  
> Liebe Grüße. eure Fee ;)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]