matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSchiefe Asymptote
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Schiefe Asymptote
Schiefe Asymptote < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schiefe Asymptote: Frage
Status: (Frage) beantwortet Status 
Datum: 11:55 Mo 12.09.2005
Autor: zlata

Hallo!

Wie kann ich eine Funktionsgleichung bestimmen, die die lineare Funktion y=2x+4  als schiefe Asymptote hat?
Gibt es da ein allgemeines Verfahren?

Danke Zlata

        
Bezug
Schiefe Asymptote: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 12:10 Mo 12.09.2005
Autor: Loddar

Hallo zlata!


Eine gebrochen-rationale Funktion $f(x) \ = \ [mm] \bruch{g(x)}{h(x)}$ [/mm] lässt sich ja durch eine MBPolynomdivision in die Darstellung $f(x) \ = \ A(x) + [mm] \bruch{R(x)}{h(x)}$ [/mm] überführen.


Dabei gibt dann $A(x)_$ die Asymptotenfunktion für [mm] $x\rightarrow \pm \infty$ [/mm] an, und der Bruch [mm] $\bruch{R(x)}{h(x)}$ [/mm] die Restfunktion.
Dabei ist nun der Grad von $R(x)_$ nun echt kleiner als der Grad von $h(x)_$ !

Für Deine gewünschte Asymptoten-Funktion lässt sich das nun folgendermaßen anwenden:

$f(x) \ = \ [mm] \underbrace{2x+4}_{= \ A(x)} [/mm] \ + \ [mm] \bruch{R(x)}{h(x)}$ [/mm]

Für $R(x)_$ und $h(x)_$ wähle ich nun beliebig:

$h(x) \ := \ x-2$    sowie    $R(x) \ = \ 3$


Damit wird: $f(x) \ = \ 2x+4 \ + \ [mm] \bruch{3}{x-2}$ [/mm]


Wenn Du das nun entsprechend erweiterst und auf einen Bruch zusammenfasst, hast Du eine Funktion mit der gewünschten Asymptote.

Kontrollergebnis:  $f(x) \ = \ [mm] \bruch{2x^2-5}{x-2}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]