matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSchnitt offener Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Schnitt offener Mengen
Schnitt offener Mengen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt offener Mengen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:40 Di 31.05.2005
Autor: Nitek

Ich kämpfe momentan mit folgender Aufgabenstellung:
"Finden sie ein Beispiel dafür, daß ein beliebiger Schnitt offener Mengen nicht zwangsläufig wieder eine offene Menge ergibt"

Mir ist dabei inzwischen klar, daß ich unendlich viele Schnitte brauche und es wohl darauf hinaus läuft dadurch im  [mm] \IR^{n} [/mm] eine Schnittmenge mit Dimension n-1 zu erzeugen, aber wie genau?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnitt offener Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Di 31.05.2005
Autor: Marcel

Hallo Nitek!

> Ich kämpfe momentan mit folgender Aufgabenstellung:
>  "Finden sie ein Beispiel dafür, daß ein beliebiger Schnitt
> offener Mengen nicht zwangsläufig wieder eine offene Menge
> ergibt"
>  
> Mir ist dabei inzwischen klar, daß ich unendlich viele
> Schnitte brauche und es wohl darauf hinaus läuft dadurch im
>  [mm]\IR^{n}[/mm] eine Schnittmenge mit Dimension n-1 zu erzeugen,
> aber wie genau?

Es stimmt, dass du unendlich viele Mengen miteinander schneiden musst. Ich schreibe dir einfach mal ein Beispiel hin, und du darfst dann anhand des Beispiels argumentieren:
Seien [mm] $A_n:=\left]-\,\frac{1}{n},\;\frac{1}{n}\right[=\left\{x \in \IR:\; -\,\frac{1}{n} < x < \frac{1}{n}\right\}$ [/mm] ($n [mm] \in \IN=\left\{1,\,2,\,3,\,\ldots\right\}$) [/mm] und betrachte:
[mm] $\bigcap_{n \in \IN} A_n$ [/mm]
(Ich behaupte:
1.) Alle [mm] $A_n$ [/mm] sind offen (Beweis?)
2.) [mm] $\bigcap_{n \in \IN} A_n=\{0\}$ [/mm] (Beweis?) und
3.) Die Menge [mm] $\{0\}$ [/mm] ist nicht offen (Beweis?), aber abgeschlossen (Beweis?)!)

So, und nun bist du an der Reihe! :-)

PS: Ergänzend sei angemerkt: Wir betrachten hierbei (natürlich) den metrischen Raum [mm] $(\IR,\,d)$, [/mm] wobei $d$ die "übliche Betragsmetrik" auf [mm] $\IR$ [/mm] sei. Auf den Begriff des topologischen Raumes werde ich hierbei nicht weiter eingehen, ich denke, (wenn es vorher unklar war!) mit dem Beispiel, dieser Bemerkung und deinem Analysis-Skript bekommst du die Aufgabe nun problemlos gelöst :-)!

Viele Grüße,
Marcel

Bezug
                
Bezug
Schnitt offener Mengen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 07:32 Mi 01.06.2005
Autor: Nitek

Sowohl in meinem Script als auch in einigen die ich inzwischen bei Google gefunden habe, wird die leere Menge aber als offen UND abgeschlossen bezeichnet. So einfach ist die Lösung also wohl nicht.

Bezug
                        
Bezug
Schnitt offener Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Mi 01.06.2005
Autor: Marcel

Hallo!

> Sowohl in meinem Script als auch in einigen die ich
> inzwischen bei Google gefunden habe, wird die leere Menge
> aber als offen UND abgeschlossen bezeichnet. So einfach ist
> die Lösung also wohl nicht.

Du redest hier von der leeren Menge, die taucht bei mir aber gar nicht auf. Bitte lies dir das nochmal genau durch:
Es ist hier doch
[mm] $\bigcap_{n \in \IN}A_n=\{0\} \not= \emptyset$. [/mm]
Und:
[mm] $\{0\}$ [/mm] ist eben nicht die leere Menge [mm] $\emptyset$, [/mm] da $0 [mm] \in \{0\}$. [/mm] Die Menge [mm] $\{0\}$ [/mm] ist eine einelementige Menge, und diese einelementige Menge ist abgeschlossen, aber nicht offen!
Und damit hast du ein Gegenbeispiel!

Viele Grüße,
Marcel

Bezug
                                
Bezug
Schnitt offener Mengen: Sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:44 Mi 01.06.2005
Autor: Nitek

Sorry, bin ich wohl durcheinander gekommen.
Vielen Dank für deinen Tip!

Bezug
                                        
Bezug
Schnitt offener Mengen: leere Menge
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mi 01.06.2005
Autor: Hensing

ist die leere Menge nicht immer in R offen UND abgeschlossen?

WEIL:

die Leere Menge ist das Komplement von R, was bekanntlich offen UND abgeschlossen ist ...
somit ist die leere Menge immer sowohl offen, als auch abgeschlossen (in R wohlbemerkt)

Bezug
                                                
Bezug
Schnitt offener Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Mi 01.06.2005
Autor: SEcki


>  somit ist die leere Menge immer sowohl offen, als auch
> abgeschlossen (in R wohlbemerkt)

Und wo ist die leere Menge nicht offen und abgeschlossen zu gleich?

Die Aussage ist auch ohne Klammern vollkomen richtig.

SEcki

Bezug
                                                
Bezug
Schnitt offener Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mi 01.06.2005
Autor: Marcel


> ist die leere Menge nicht immer in R offen UND
> abgeschlossen?
>  
> WEIL:
>  
> die Leere Menge ist das Komplement von R, was bekanntlich
> offen UND abgeschlossen ist ...
>  somit ist die leere Menge immer sowohl offen, als auch
> abgeschlossen (in R wohlbemerkt)

Ja, aber warum diskutieren wir hier noch immer über die leere Menge? Es war (s.o.):
[mm] $\bigcap_{n \in \IN}A_n=\{0\}\not=\emptyset$ [/mm]
Wenn es nur eine Frage aus reinem Interesse war, dann okay. Aber es hat gar nichts mit meinem Beispiel zu tun (s.o.), weil dort die leere Menge gar nicht auftaucht!

So, ich habe nun leider nicht mehr viel Zeit und hoffe, dass euch jetzt alles klar ist!

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]