matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittfläche Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Schnittfläche Ebenen
Schnittfläche Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittfläche Ebenen: Hilfe/Erklärung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:25 Mo 11.01.2010
Autor: BlackSalad

Aufgabe
Wie lautet die Schnittfläche  der beiden Ebenen:

E1: (5/3/6) + a*(3/-2/2)+ b*(-5/3/-7)
E2: (1/1/3) + c*(4/11/0)+ d*(-1/1/3)

Hallo,

kann mir jemand nen Tipp geben wie das so genau geht? Ich weiß nicht wie ich anfangen soll.

        
Bezug
Schnittfläche Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Mo 11.01.2010
Autor: fred97


> Wie lautet die Schnittfläche  der beiden Ebenen:
>  
> E1: (5/3/6) + a*(3/-2/2)+ b*(-5/3/-7)
>  E2: (1/1/3) + c*(4/11/0)+ d*(-1/1/3)
>  Hallo,
>  
> kann mir jemand nen Tipp geben wie das so genau geht? Ich
> weiß nicht wie ich anfangen soll.


Bestimme die Lösungsmenge des Gleichungssystems

$(5/3/6) + a*(3/-2/2)+ b*(-5/3/-7)=(1/1/3) + c*(4/11/0)+ d*(-1/1/3)$

FRED

Bezug
        
Bezug
Schnittfläche Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Mo 11.01.2010
Autor: angela.h.b.


> Wie lautet die Schnittfläche  der beiden Ebenen:
>  
> E1: (5/3/6) + a*(3/-2/2)+ b*(-5/3/-7)
>  E2: (1/1/3) + c*(4/11/0)+ d*(-1/1/3)
>  Hallo,
>  
> kann mir jemand nen Tipp geben wie das so genau geht? Ich
> weiß nicht wie ich anfangen soll.

Hallo,

eine Möglichkeit hat Dir Fred ja schon gesagt.

Du kannst aber auch die eine Ebenengleichung in die Normalen- bzw. Koordinatenform umwandeln (Hinweis: Normalenvektor= Kreuzprodukt der Richtungsvektoren),
und dann die Parameterform in die Nomalen bzw. Koordinatenform einsetzen.

Der Vorteil dieser Vorgehensweise: man hat am Ende nur eine einzige Gleichung mit zwei Unbekannten, was vielen Schülern deutlich leichter fällt, als das GS aus drei Gleichunge mit 4 Unbekannten zu lösen - und dann noch zu interpretieren.
Voraussetzung ist natürlich, daß man die verschiedenen Darstellungen der Ebenen ineinander umwandeln kann.

Wenn Du ein wenig Zeit hast, versuche beides, dann merkst Du ja, was Dir leichter fällt.

Gruß v. Angela




Bezug
        
Bezug
Schnittfläche Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 11.01.2010
Autor: BlackSalad

Also ich hab es nach der ersten Methode versucht. Die Ebenen gleichgesetzt. Nun erhalte ich aber leider ein Gleichungssystem mit 4 Variablen aber nu 3 Gleichungen. Kann das denn sein?

Bezug
                
Bezug
Schnittfläche Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Mo 11.01.2010
Autor: reverend

Hallo BlackSalad,

> Also ich hab es nach der ersten Methode versucht. Die
> Ebenen gleichgesetzt. Nun erhalte ich aber leider ein
> Gleichungssystem mit 4 Variablen aber nu 3 Gleichungen.
> Kann das denn sein?

Ja, das ist sogar der wahrscheinlichste Ausgang.
Es gibt im [mm] \IR^3 [/mm] doch nur drei Möglichkeiten:

1) Die Ebenen sind identisch. Dann müsstest Du eine Lösung mit zwei Parametern haben, also z.B. 4 Variable, aber nur 2 unabhängige Gleichungen.
2) Die Ebenen sind parallel zueinander und haben einen Abstand |d|>0. Dann hat Dein Gleichungssystem keine Lösung, z.B. weil sich Gleichungen widersprechen.
3) Die Ebenen schneiden sich in einer Geraden. Dann hast Du eine Lösung mit einem Parameter, also z.B. so wie bei Dir, 4 Variable, aber nur 3 unabhängige Gleichungen.

Ich persönlich finde daher die von Angela vorgeschlagene Vorgehensweise leichter. Da überblickt man auch ohne große Übung, welcher Fall vorliegt.

lg
reverend

Bezug
                        
Bezug
Schnittfläche Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mo 11.01.2010
Autor: BlackSalad

Danke,

ich werde es nachher noch nach Angelikas Vorschlag rechnen. Allerdings wäre ich euch dankbar wenn ihr meine Ergebnis korrigieren würdet:


Ich hab als Gleichungssystem:

-3a+5b+4c-d=4
2a-3b+11c+d=2
-2a+7b+3d=3

und dann bekomme ich ganz komische Lösungen:

a= [mm] 2d-\bruch{-5}{3} [/mm]
[mm] b=d-\bruch{1}{3} [/mm]
[mm] c=\bruch{1}{3} [/mm]
[mm] d=\bruch{1}{3}+b [/mm]


Stimmt das?

Und wie muss ich nun weiter vorgehen?


Liebe Grüße und Danke!!


Bezug
                                
Bezug
Schnittfläche Ebenen: Tipp
Status: (Antwort) fertig Status 
Datum: 18:07 Mo 11.01.2010
Autor: informix

Hallo BlackSalad,

> Danke,
>  
> ich werde es nachher noch nach Angelikas Vorschlag rechnen.
> Allerdings wäre ich euch dankbar wenn ihr meine Ergebnis
> korrigieren würdet:
>  
>
> Ich hab als Gleichungssystem:
>  
> -3a+5b+4c-d=4
>  2a-3b+11c+d=2
>  -2a+7b+3d=3
>  
> und dann bekomme ich ganz komische Lösungen:
>  
> a= [mm]2d-\bruch{-5}{3}[/mm]  [notok]
>  [mm]b=d-\bruch{1}{3}[/mm]  [notok]
>  [mm]c=\bruch{1}{3}[/mm]  [ok]
>  [mm]d=\bruch{1}{3}+b[/mm] überflüssig, denn die anderen hängen von d ab!
>  
>
> Stimmt das?

du solltest die Gleichungen so bestimmen, dass sie alle auf der rechten Seite die Variable d enthalten, die du dann frei wählen kannst.
Aber du hast dich bei a und b verrechnet.

>
> Und wie muss ich nun weiter vorgehen?


Gruß informix

Bezug
                                        
Bezug
Schnittfläche Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Mi 13.01.2010
Autor: BlackSalad

Hallo, Danke für die Korrektur. Sind dann a= [mm] -\bruch{5-6d-8/3}{3} [/mm] ; b= d [mm] +\bruch{1}{3} [/mm] richtig?


Liebe Grüße

Bezug
                                                
Bezug
Schnittfläche Ebenen: meine Lösung
Status: (Antwort) fertig Status 
Datum: 22:07 Mi 13.01.2010
Autor: informix

Hallo BlackSalad,

> Hallo, Danke für die Korrektur. Sind dann a=
> [mm]-\bruch{5-6d-8/3}{3}[/mm] ; b= d [mm]+\bruch{1}{3}[/mm] richtig? [notok]

ich habe: [mm] a=-2d-\frac13 [/mm] , [mm] b=\frac13-d [/mm] , [mm] c=\frac13 [/mm]

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]