matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittgerade von Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Schnittgerade von Ebenen
Schnittgerade von Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade von Ebenen: Idee
Status: (Frage) beantwortet Status 
Datum: 12:50 So 03.08.2008
Autor: kati93

Hallo zusammen,

ich hoffe mal wieder auf eure inspirierende Hilfe :)

Ich hab hier eine Aufgabe, da sind 2 Ebenen [mm] E_1 [/mm] und [mm] E_2 [/mm] in Koordinatenform gegeben, die schneiden sich in einer Schnittgeraden g.
Nun soll ich eine weitere Ebenengleichung F bestimmen, die [mm] E_1 [/mm] und [mm] E_2 [/mm] ebenfalls in g schneidet und zudem eine weitere Bedinung erfüllen muss (mal orthogonal zu einer Ebene, mal einen bestimmten Punkt erfüllt etc.). Die zweite Bedinung ist mir immer klar,damit kann ich was anfangen.
Mein Problem ist, was für eine Bedinung muss ich aufstellen,damit F, [mm] E_1 [/mm] und [mm] E_2 [/mm] sich in g schneiden? Ist es da sinnvoll [mm] E_1 [/mm] und [mm] E_2 [/mm] in die Parameterform umzustellen um dann darzustellen, dass die Richtungsvektoren linear unabhängig sind? Oder gibt es da noch eine weitere Möglichkeit?

Danke schön für eure Hilfe am heiligen Sonntag :)

        
Bezug
Schnittgerade von Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 So 03.08.2008
Autor: Somebody


> Hallo zusammen,
>
> ich hoffe mal wieder auf eure inspirierende Hilfe :)
>  
> Ich hab hier eine Aufgabe, da sind 2 Ebenen [mm]E_1[/mm] und [mm]E_2[/mm] in
> Koordinatenform gegeben, die schneiden sich in einer
> Schnittgeraden g.
> Nun soll ich eine weitere Ebenengleichung F bestimmen, die
> [mm]E_1[/mm] und [mm]E_2[/mm] ebenfalls in g schneidet und zudem eine weitere
> Bedinung erfüllen muss (mal orthogonal zu einer Ebene, mal
> einen bestimmten Punkt erfüllt etc.). Die zweite Bedinung
> ist mir immer klar,damit kann ich was anfangen.
>  Mein Problem ist, was für eine Bedinung muss ich
> aufstellen,damit F, [mm]E_1[/mm] und [mm]E_2[/mm] sich in g schneiden? Ist es
> da sinnvoll [mm]E_1[/mm] und [mm]E_2[/mm] in die Parameterform umzustellen

Falls Du die Geradengleichung der gemeinsamen Schnittgeraden g kennst (und dies ist im 3dim Fall sicher eine Parameterform mit Stützvektor und Richtungsvektor von g), dann ist es vermutlich schon am Einfachsten, den Ansatz für die dritte Ebene F in Paramterform zu machen: als Stützvektor von F nimmst Du den Stützvektor von g und als einen Richtungsvektor von F den Richtungsvektor von g: damit ist sichergestellt, dass F durch g geht. Eine etwaige weitere Bedingung, die F erfüllen muss, kann nur noch durch geeignete Wahl des zweiten Richtungsvektors dieser Parameterform von F berücksichtigt werden. Bis auf diesen zweiten Richtungsvektor ist F ja durch diesen Ansatz bereits bestimmt.

> um
> dann darzustellen, dass die Richtungsvektoren linear
> unabhängig sind?

Naja, Richtungsvektoren einer Ebenengleichung in Parameterform müssen immer linear abhängig sein. Das hat mit der speziellen Lage von F (z.B. ob F durch g geht) noch nichts zu tun. Aber die Bedingung, dass F durch g geht, lässt sich in einem Ansatz für die Parameterform der Ebenengleichung von F besonders einfach sicherstellen.


Bezug
                
Bezug
Schnittgerade von Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:18 So 03.08.2008
Autor: kati93

Super, vielen lieben dank somebody! Das werde ich gleich versuchen!

Liebe Grüße und einen schönen Sonntag!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]