matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSchnittkurve 2er Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Schnittkurve 2er Ebenen
Schnittkurve 2er Ebenen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittkurve 2er Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Fr 06.07.2007
Autor: Carlchen

Aufgabe
Gesucht sind der höchste und der tiefste Punkt der Schnittkurve, die entsteht, wenn das elliptische Paraboloid [mm]z=x^2+4y^2[/mm] von der Ebene [mm]4x-8y-z+24[/mm] geschnitten wird.

Hi Leute,

Im Allgemeinen ist es doch so, dass man die beiden Ebenen gleichsetzt, wenn man die Schnittkurve berechnen möchte, oder?
Das habe ich mal gemacht (z=z) und folgendes raus:

[mm]G(x,y)=0=x^2+4y^2-4x+8y-24[/mm]

Nun hab ich jeweils die partiellen Ableitungen nach x und y berechnet, um stationäre Punkte rauszufinden:

[mm]\bruch{\partial G}{\partial x} = 2x-4=0 \Rightarrow x=\bruch{1}{2}[/mm]
[mm]\bruch{\partial G}{\partial y} = 8y+8=0 \Rightarrow y=-1[/mm]

Das haut doch aber nicht hin, da die Schnittkurve (veranschaulicht durch Derive) eine Ellipse ist und auf jeden Fall einen höchsten und tiefsten Punkt hat.

Eine andere Überlegung von mir wäre bei diesem Problem die Randextrema zu betrachten, nur hab ich dafür keinen Ansatz.
Ich würde mich freuen, wenn mir jemand helfen könntet.

Grüße Carlchen

        
Bezug
Schnittkurve 2er Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Sa 07.07.2007
Autor: MatthiasKr

Hi Carlchen,

> Gesucht sind der höchste und der tiefste Punkt der
> Schnittkurve, die entsteht, wenn das elliptische Paraboloid
> [mm]z=x^2+4y^2[/mm] von der Ebene [mm]4x-8y-z+24[/mm] geschnitten wird.
>  Hi Leute,
>  
> Im Allgemeinen ist es doch so, dass man die beiden Ebenen
> gleichsetzt, wenn man die Schnittkurve berechnen möchte,
> oder?
>  Das habe ich mal gemacht (z=z) und folgendes raus:
>  
> [mm]G(x,y)=0=x^2+4y^2-4x+8y-24[/mm]
>  
> Nun hab ich jeweils die partiellen Ableitungen nach x und y
> berechnet, um stationäre Punkte rauszufinden:
>  
> [mm]\bruch{\partial G}{\partial x} = 2x-4=0 \Rightarrow x=\bruch{1}{2}[/mm]
>  
> [mm]\bruch{\partial G}{\partial y} = 8y+8=0 \Rightarrow y=-1[/mm]
>  
> Das haut doch aber nicht hin, da die Schnittkurve
> (veranschaulicht durch Derive) eine Ellipse ist und auf
> jeden Fall einen höchsten und tiefsten Punkt hat.

Zunächst einmal musst du dir überlegen, was höchster oder tiefster punkt eigentlich bedeutet. In einem 3D koordinatensystem (x-y-z) deutet man normalerweise die z-koordinate als abhängig oder 'die höhe'. Der höchste punkt ist also vermutlich bzgl. der z-koordinate zu bestimmen.
Die Kurve, deren implizite darstellung du bestimmt hast (G(x,y)=0) ist also eigentlich die projektion der schnittkurve auf die x-y ebene.
zu tun ist folgendes: bestimme aus der impliziten darstellung der kurve eine explizite (y=f(x) oder x=g(y)) das sollte mittels p-q-formel möglich sein.
diese kurve setzt du dann in eine der ebenen ein und optimierst die z-koordinate.
Klar?

VG
matthias



>  
> Eine andere Überlegung von mir wäre bei diesem Problem die
> Randextrema zu betrachten, nur hab ich dafür keinen
> Ansatz.
>  Ich würde mich freuen, wenn mir jemand helfen könntet.
>  
> Grüße Carlchen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]