matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittmenge von g und E
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Schnittmenge von g und E
Schnittmenge von g und E < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittmenge von g und E: Wie komme ich weiter ?
Status: (Frage) beantwortet Status 
Datum: 14:58 Fr 17.11.2006
Autor: splin

Aufgabe
Weisen sie nach, dass g [mm] \subset [/mm] E.
[mm] g:\vec{x}= \vektor{-1 \\ 1\\2}+k\vektor{4 \\ -2\\4} [/mm]
E: x1+4x2+x3-5=0

Hallo ich komme mit der Aufgabe nicht witer. Könnt ihr mal gucken ob ich alles richtig gemacht habe?

Als erstes habe ich die Ebenengleichung in die Normalenform umgewandelt:
[mm] E:\vektor{1 \\ 4\\1}*\vec{x}=5 [/mm]
Dann habe ich die g-gleichung in die Normalengleichung der Ebene eingesetz und ausgerechnet. Dabei habe ich 5=5 erhalten. Noch keine Entscheidung möglich.
Wie gehe ich weiter vor?
P.S: Ich habe auch versucht mit der Punkt-Richtung der E-Gleichung zur rechnen. Dabei wenn ich die Parameter ausgerechnet und in die E-Gleichung eingesetzt habe muss die Gleichung von g entstehen. Ich habe aber eine andere Gleichung erhalten.
(Das ist meine Parametergleichung:
[mm] E:\vec{x}=\vektor{5\\ 0\\0}+r\vektor{-5 \\ 5/4\\0}+s\vektor{-5 \\ 0\\5} [/mm]
Und das ist die Gleichung die ich bekommen habe:
[mm] x=\vektor{7 \\ 0\\2}+k\vektor{-12 \\ -2\\4}. [/mm]

        
Bezug
Schnittmenge von g und E: Alles gezeigt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Fr 17.11.2006
Autor: otto.euler


> Weisen sie nach, dass g [mm]\subset[/mm] E.
>  [mm]g:\vec{x}= \vektor{-1 \\ 1\\2}+k\vektor{4 \\ -2\\4}[/mm]
>  E:
> x1+4x2+x3-5=0
>  Hallo ich komme mit der Aufgabe nicht witer. Könnt ihr mal
> gucken ob ich alles richtig gemacht habe?
>  
> Als erstes habe ich die Ebenengleichung in die Normalenform
> umgewandelt:
>  [mm]E:\vektor{1 \\ 4\\1}*\vec{x}=5[/mm]
>  Dann habe ich die
> g-gleichung in die Normalengleichung der Ebene eingesetz
> und ausgerechnet. Dabei habe ich 5=5 erhalten.

Du hast eine wahre Aussage (5=5) erhalten, das bedeutet, dass g in E liegt! Also bist du damit fertig.

Bezug
        
Bezug
Schnittmenge von g und E: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Sa 18.11.2006
Autor: mathemak

Hallo!

Der Normalenvektor der Ebene muss in diesem Fall orthogonal zum Richtungsvektor sein und der Aufpunkt Teil der Ebene.

> Weisen sie nach, dass g [mm]\subset[/mm] E.
>  [mm]g:\vec{x}= \vektor{-1 \\ 1\\2}+k\vektor{4 \\ -2\\4}[/mm]
>  E:
> x1+4x2+x3-5=0

Wenn Du den Richtungsvektor der Geraden in die Koordinatenform einsetzt, musst du 0 erhalten (Skalarprodukt)

$ 4 - 4 [mm] \cdot [/mm] 2 +4 = 0$

und gleichzeitig muss die Gleichung erfüllt sein, wenn Du den Stützvektor der Geraden einsetzt.

$ -1 + 4 +2 - 5 = 0 [mm] \iff [/mm] 0 = 0$ w.A.

Die Gerade ist Teil der Ebene!

Gruß

mathemak

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]