matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesSchnittpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Schnittpunkt
Schnittpunkt < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt: Weiss leider nicht weiter
Status: (Frage) beantwortet Status 
Datum: 21:04 Mo 08.01.2007
Autor: Organophosphat

Hallo, ich hab jetzt schon nach langem hin und her versucht den Schnittpunkt zwischen den zwei Funktionen ln(1/x) und arccot(1/x) auszurechnen. Kann mir da jemand weiterhelfen, ich komm nicht weiter.

Gruß
Sabine



    *  Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
      [Hier gibst du bitte die direkten Links zu diesen Fragen an.]
      oder
    * Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Schnittpunkt: Lösungsideen?
Status: (Antwort) fertig Status 
Datum: 21:22 Mo 08.01.2007
Autor: informix

Hallo Organophosphat und [willkommenmr],

> Hallo, ich hab jetzt schon nach langem hin und her versucht
> den Schnittpunkt zwischen den zwei Funktionen ln(1/x) und
> arccot(1/x) auszurechnen. Kann mir da jemand weiterhelfen,
> ich komm nicht weiter.
>  
> Gruß
>  Sabine

Was hast du denn bisher versucht?
[mm] \ln(\frac{1}{x})=arccot(\frac{1}{x}) [/mm]

man könnte beide Seiten als Funktionen betrachten und zeichnen, denn erkennt man, ob und wo Schnittpunkte liegen.
Wir liefern dir keine fertigen Lösungen, sondern kommentieren deine Lösungsideen. ;-)

Vielleicht hilft die auch []die Wikipedia?

Gruß informix

Bezug
                
Bezug
Schnittpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Mo 08.01.2007
Autor: Organophosphat

Ok finde ich sehr gut.
Ich habe die Graphen vor mir liegen, aber mein Problem liegt im Lösungsansatz um die x Koordinate auszurechnen.

Weiter als so bin ich leider nicht gekommen:

arccot(1/x) = ln(1/x) --> pi/2 - arctan(1/x) = ln(1/x)
--> e^(pi/2 - arctan(1/x)) = 1/x

Da bleib ich stehen.
Wo liegt mein Denkfehler?

Gruß
Sabine


Bezug
                        
Bezug
Schnittpunkt: Näherung?
Status: (Antwort) fertig Status 
Datum: 21:48 Mo 08.01.2007
Autor: informix

Hallo Organophosphat,

> Ok finde ich sehr gut.
>  Ich habe die Graphen vor mir liegen, aber mein Problem
> liegt im Lösungsansatz um die x Koordinate auszurechnen.
>  
> Weiter als so bin ich leider nicht gekommen:
>  
> arccot(1/x) = ln(1/x) --> pi/2 - arctan(1/x) = ln(1/x)
>  --> e^(pi/2 - arctan(1/x)) = 1/x

>
> Da bleib ich stehen.
>  Wo liegt mein Denkfehler?
>  

In welchem Zusammenhang steht diese Aufgabe?

Ich vermute mal, da kannst du nur mit einem Näherungsverfahren die Nullstelle, die zwischen 0 und 1 liegen dürfte, finden.

Gruß informix

Bezug
                                
Bezug
Schnittpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Mo 08.01.2007
Autor: Organophosphat

Ich hab gemeint, dass man diesen Wert ausrechnen könnte, aber ich bin eben nicht drauf gekommen und hab mich eben an das Forum hier gewandt.

Ich muss einen Kurvenvergleich anstellen und da sich die beiden Graphen schneiden, hab ich mir gedacht, dass es notwendig ist den Schnittpunkt für den Vergleich auszurechnen ;-)

Gruß
Sabine

Bezug
                                        
Bezug
Schnittpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mo 08.01.2007
Autor: informix

Hallo Organophosphat,

> Ich hab gemeint, dass man diesen Wert ausrechnen könnte,
> aber ich bin eben nicht drauf gekommen und hab mich eben an
> das Forum hier gewandt.
>
> Ich muss einen Kurvenvergleich anstellen und da sich die
> beiden Graphen schneiden, hab ich mir gedacht, dass es
> notwendig ist den Schnittpunkt für den Vergleich
> auszurechnen ;-)
>  

Es gibt einfach Funktionen, die sich jeder analytischen Berechnung entziehen, darum gibt es die Näherungsverfahren... ;-)


Gruß informix

Bezug
                                                
Bezug
Schnittpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Mo 08.01.2007
Autor: Organophosphat

Danke für die Infos, wäre sonst wahrscheinlich noch ewig hier gehockt.

Vielen Dank und Grüße
Sabine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]