matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Schnittpunkt Exp.-Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Schnittpunkt Exp.-Funktionen
Schnittpunkt Exp.-Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt Exp.-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 So 06.05.2007
Autor: just_me

Aufgabe
Die Bevölkerung des Staates Atlantis (50 Mill.) wächst jährlich um 3%, die des Staates Utopia (100 Mill.) wächst jährlich um 1%.
Nach wievielen Jahren hat Atlantis ebensoviele Einwohner wie Utopia?

hey,

ich häng ein bisschen an oben genannter aufgabe..
ich hab erstmal funktionsgleichungen aufgestellt:

Atlantis: [mm]y = 50 \cdot (1,03)^x[/mm]
Utopia: [mm]y = 100 \cdot (1,01)^x[/mm]

dann dacht ich mir, wenn ich die gleiche anzahl der bevölkerung haben möchte, such ich den schnittpunkt der graphen, d.h. ohne zu zeichnen, ich nehme mal das einsetzungsverfahren..

[mm]50 \cdot (1,03)^x = 100 \cdot (1,01)^x[/mm]

ich krieg es aber partout nicht hin, die gleichung nach x aufzulösen! vielleicht funktioniert das einsetzungsverfahren ja gar nicht bei exponentialfunktionen? wir haben die in der letzten stunde erst angefangen, daher hab ich eigentlich noch gaar keine ahnung..

hat jemand vielleicht einen tipp, denkanstoß oder sonstwas für mich? :)

lg,
just_me

        
Bezug
Schnittpunkt Exp.-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 So 06.05.2007
Autor: M.Rex

Hallo

Der Ansatz ist korrekt.

$ 50 [mm] \cdot (1,03)^x [/mm] = 100 [mm] \cdot (1,01)^x [/mm] $ |:100

[mm] \gdw\bruch{1}{2}*(1,03)^{x}=(1,01)^{x} |:(1,03)^{x} [/mm]
[mm] \gdw\bruch{1}{2}=\bruch{(1,01)^{x}}{(1,03)^{x}} [/mm]
[mm] \gdw\bruch{1}{2}=\left(\bruch{1,01}{1,03}\right)^{x} [/mm]
[mm] \gdw\bruch{1}{2}=0,98^{x} [/mm]
[mm] \Rightarrow x=log_{0,98}\bruch{1}{2} [/mm]

Marius

Bezug
                
Bezug
Schnittpunkt Exp.-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 So 06.05.2007
Autor: just_me

hey,

danke für deine schnelle antwort!
so ähnlich hatte ich das auch schon probiert, aber bei dem vorletzten schritt bin ich dann nicht mehr weitergekommen - das lässt sich also nicht ohne logarithmus lösen? das hatte wir nämlich noch nicht...

lg
just_me

Bezug
                        
Bezug
Schnittpunkt Exp.-Funktionen: intelligent raten...
Status: (Antwort) fertig Status 
Datum: 21:01 So 06.05.2007
Autor: informix

Hallo just_me,

> hey,
>  
> danke für deine schnelle antwort!
>  so ähnlich hatte ich das auch schon probiert, aber bei dem
> vorletzten schritt bin ich dann nicht mehr weitergekommen -
> das lässt sich also nicht ohne logarithmus lösen? das hatte
> wir nämlich noch nicht...
>  

wenn Ihr den Logarithmus "offiziell" noch nicht kennt, sollt Ihr vielleicht durch "gezieltes Raten" die Lösung suchen:

Probier mal: x=32, ..., 35

Habt Ihr schon mal 'was von Intervallschachtelung gehört?

such zuerst die Zahl, die das "beste" Ergebnis liefert.
Dann kannst du ja noch die erste Kommastelle hinzunehmen, um dein Ergebnis zu verfeinern...


Gruß informix

Bezug
                
Bezug
Schnittpunkt Exp.-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 So 06.05.2007
Autor: rabilein1

Ich habe da etwas anderes raus (allerdings auch mit Logarithmus). und zwar:

[mm] x=\bruch{log2}{log1,03-log1,01}=35,29 [/mm] (Jahre)

In die Ursprungsgleichung eingesetzt ergibt das für beide Städte eine Bevölkerung von rund 142 Mio

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]