matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittpunkt Gerade Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Schnittpunkt Gerade Ebene
Schnittpunkt Gerade Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt Gerade Ebene: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:27 So 17.12.2006
Autor: root

Aufgabe
Gegeben sind die die Gerade $g$ und die Ebene $E$ durch folgende Gleichungen:
$g$: [mm] \vec{x} [/mm] = [mm] \pmat{4 \\ 2 \\ 4} [/mm] + [mm] \lambda \pmat{ 2 \\ -1 \\ -2}; [/mm] $E$: [mm] \vec{x} [/mm] = [mm] \pmat{ 4 \\ 0 \\ 2} [/mm] + [mm] \sigma \pmat{ 3 \\ -2 \\ 2} [/mm] + [mm] \tau \pmat{ -2 \\ 3 \\ 2} [/mm]
a) Bestimmen Sie den Schnittpunkt $S$ der Geraden $g$ mit der Ebene $E$.

Laut Lösungsbuch soll hier $S (3; 2,5; 5)$ rauskommen.


So, meiner Ansicht nach bekommt man den Schnittpunkt doch durch gleichsetzen, oder? Ich hab das tausendmal durchgerechnet und komm immer irgendwie auf falsche [mm] $\sigma$s [/mm] und [mm] $\tau$s. [/mm]

Mein Rechenweg:

I) 4 + [mm] 2\lambda [/mm] = 4 + [mm] 3\sigma [/mm] - [mm] 2\tau [/mm]
II) 2 - [mm] \lambda [/mm] = [mm] -2\sigma [/mm] + [mm] 3\tau [/mm]
III) 4 - [mm] 2\lambda [/mm] = 2 + [mm] 2\sigma [/mm] + [mm] 2\tau [/mm]

aus II) [mm] \lambda [/mm] = [mm] 2\sigma [/mm] - [mm] 3\tau [/mm] + 2

II in I)
[mm] 2\lambda [/mm] = [mm] 3\sigma [/mm] - [mm] 2\tau [/mm]
[mm] 4\sigma [/mm] - [mm] 6\tau [/mm] + 4 = [mm] 3\sigma [/mm] - [mm] 2\tau [/mm]
[mm] \sigma [/mm] - [mm] 6\tau [/mm] + 4 = [mm] -2\tau [/mm]
[mm] \sigma [/mm] = [mm] 4\tau [/mm] - 4

I, II in III)
2 - [mm] 2\lambda [/mm] = [mm] 2\sigma [/mm] + [mm] 2\tau [/mm]
2 - [mm] 4\sigma [/mm] + [mm] 6\tau [/mm]  - 4 = [mm] 2\sigma [/mm] + [mm] 2\tau [/mm]
-2 + [mm] 6\tau [/mm] = [mm] 6\sigma [/mm] + [mm] 2\tau [/mm]
-2 + [mm] 4\tau [/mm] = [mm] 6\sigma [/mm]
[mm] 4\tau [/mm] = [mm] 6\sigma [/mm] + 2
[mm] 4\tau [/mm] = [mm] 24\tau [/mm] - 24 + 2
[mm] 4\tau [/mm] = [mm] 24\tau [/mm] - 22
22 = [mm] 20\tau [/mm]
=> [mm] \tau [/mm] = [mm] \bruch{10}{11} [/mm]
=> [mm] \sigma [/mm] = [mm] \bruch{40}{11} [/mm] - 4 = - [mm] \bruch{4}{11} [/mm]


Wo kann hier der Fehler begraben liegen?



Liebe Grüße und besten Dank im Voraus, Thomas!

        
Bezug
Schnittpunkt Gerade Ebene: Bruchrechnung
Status: (Antwort) fertig Status 
Datum: 12:48 So 17.12.2006
Autor: Loddar

Hallo Thomas!


Im allerletzten Schritt schmeißt Du doch glatt Zähler und Nenner durcheinander.

Aus $22 \ = \ [mm] 20*\tau$ [/mm] erhalte ich:    [mm] $\tau [/mm] \ = \ [mm] \bruch{22}{20} [/mm] \ = \ [mm] \bruch{11}{10}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Schnittpunkt Gerade Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 So 17.12.2006
Autor: root


> Im allerletzten Schritt schmeißt Du doch glatt Zähler und
> Nenner durcheinander.

Upps, das ist mir jetzt aber peinlich.


Ändert aber leider immer noch nichts dran, dass man damit nicht auf den Schnittpunkt kommt. Der Fehler muss irgendwie schon weiter oben drinstecken.


Liebe Grüße, Thomas

Bezug
                        
Bezug
Schnittpunkt Gerade Ebene: ich erhalte Ergebnis
Status: (Antwort) fertig Status 
Datum: 13:02 So 17.12.2006
Autor: Loddar

Hallo Thomas!


Ich erhalte durch Einsetzen aber exakt den Schnittpunkt.

Mit [mm] $\tau [/mm] \ = \ 1.1$ musst Du selbstverständlich auch das richtige [mm] $\sigma$ [/mm] mit [mm] $\sigma [/mm] \ = \ 0.4$ ermitteln und einsetzen.


Gruß
Loddar


Bezug
                                
Bezug
Schnittpunkt Gerade Ebene: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 So 17.12.2006
Autor: root

Ja, du hast natürlich recht....


Ich hab dann beim Einsetzen [mm] \sigma [/mm] und [mm] \tau [/mm] verwechselt. Ich glaub ich sollte mal n Mittagsschläfchen machen. Mir schwirrt schon der Kopf vor lauter Zahlen und griechischen Buchstaben. Aber morgen is zum Glück die letzte Mathe-Klausur (zumindest schulisch) für mich, danach kommt nur noch Abi. Da muss man nochmal gescheit lernen.


Vielen Vielen Dank dir nochmal! Ich hätt allein glaub ich meinen Fehler nie gefunden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]