matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSchnittpunkt Hyperbel + gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Schnittpunkt Hyperbel + gerade
Schnittpunkt Hyperbel + gerade < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt Hyperbel + gerade: Frage
Status: (Frage) beantwortet Status 
Datum: 18:15 Di 28.06.2005
Autor: geometrix

Liebe Fachkundige Tüftler!
Ich bin auf eine Aufgabe gestoßen, die meine Fähigkeiten übersteigt.
Falls ihr irgendeine Idee habt, wie ich an sie rangehen kann, bitte schreibt.

hier ist sie:

Welches sind die Bedingungen für r und s, für die die Hyperbel  [mm] \bruch{x²}{a²}- \bruch{y²}{b²}=1 [/mm] mit der Geraden
[mm] \bruch{x}{r}+ \bruch{y}{s}=1 [/mm] einen, zwei oder keinen Schnittpunkt haben?
r,s   [mm] \in \IR [/mm]

Soll ich gleich setzen und nach irgend einer der Variablen umstellen? oder gibt es einen Trick? Bin für jeden Gedanken dankbar.
Danke!

        
Bezug
Schnittpunkt Hyperbel + gerade: Erst umstellen, dann einsetzen
Status: (Antwort) fertig Status 
Datum: 18:26 Di 28.06.2005
Autor: Roadrunner

Hallo geometrix!


Gleich zu Beginn die beiden Gleichungen gleichzusetzen wird Dir nicht viel bringen, da Du dann immer noch eine Gleichung mit zwei verschiedenen Variablen hast.


Aber wenn Du die Geradengleichung nach einer der beiden Variablen umstellst, und dieses Ergebnis dann in die Hyperbel-Gleichung einsetzt, erhältst Du eine quadratische Gleichung.

Wenn Du diese z.B. mit der MBp/q-formel löst, kannst Du anhand des Wurzelausdruckes die verschiedenen Lösungen (verschiedene Anzahl der Lösungen) ermitteln.


Gruß vom
Roadrunner


Bezug
                
Bezug
Schnittpunkt Hyperbel + gerade: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:33 Di 28.06.2005
Autor: geometrix

Danke für deine Antwort.
ich kann die Geradengleichung entweder nach x oder nach y umstellen, dann hab ich aber auch nicht viel gekonnt, dan steht da:

                  y=   [mm] \wurzel{ \bruch{x²b²}{a²} - b²}= [/mm] s -   [mm] \bruch{sx}{r} [/mm]

da wird man nicht fertig......
oder soll ich es durchrechnen?

Bezug
                        
Bezug
Schnittpunkt Hyperbel + gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Di 28.06.2005
Autor: TranVanLuu


[mm]\wurzel{ \bruch{x²b²}{a²} - b²}=[/mm] s -   [mm]\bruch{sx}{r}[/mm]


Du kannst ja jetzt beide Seiten quadrieren und dann die Gleichung, wie Roadrunner schon sagte, mit der p/q Formel "lösen", d.h. du bekommst dann einen Ausdruck für x an dem sich ablesen lässt, wann es keine, eine oder zwei Lösungen, d.h. Schnittpunkte gibt!!

MfG

Tran

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]