matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenSchnittpunktberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Schnittpunktberechnung
Schnittpunktberechnung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunktberechnung: Ideen, Tipps bitte
Status: (Frage) beantwortet Status 
Datum: 14:56 So 09.12.2007
Autor: Theoretix

Aufgabe
Bestimmen sie die Schnittpunkte der Schaubilder von g und f:
[mm] f(x)=x^{3}-3x^{2}-x+3 [/mm]
[mm] g(x)=-x^{3}+3x^{2}-2x [/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich komme grade einfach nicht weiter.
Mein Ansatz ist:
Beide Funktionen gleichsetzen um die Schnittpunkte zu berechnen:
[mm] x^{3}-3x^{2}-x+3=-x^{3}+3x^{2}-2x [/mm]
wenn ich das dann auf eine Seite bringe ergibt sich:
[mm] 2x^{2}-7x^{2}+3x-1... [/mm]
und jetzt treten Verständnisprobleme auf, da ich jetzt so weit ich es noch richtig weiß eine Nullstelle suchen muss und mit der Polynomdivision die Restlichen...
Meine Fragen jetzt also:
Wie macheich wirklich weiter?
Wieso muss ich die Nullstellen suchen?(Nullstellen sind ja die Werte für x, an denen der Funktionswert 0 ist, und nicht sich die Geraden schneiden oder?
-Was ist da der Zusammenhang?
kann mir bitte jemand helfen!?
danke schonmal im Vorraus!MFG

        
Bezug
Schnittpunktberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 So 09.12.2007
Autor: Tyskie84

Hallo!

>  [mm]x^{3}-3x^{2}-x+3=-x^{3}+3x^{2}-2x[/mm]
>  wenn ich das dann auf eine Seite bringe ergibt sich:
>  [mm]2x^{2}-7x^{2}+3x-1...[/mm]

Nein

Gleichsetzen ergibt:

2x³-6x²+x+3=0
Nun verfährst du so wie man Nullstellen berechnet. Da du die Fkt gleichgesetzt hast suchtst du nicht die Nullstellen sonder die Punkte anden die Funktionen die gleichen werte annehmen. also gleichsetzten und "nullstellen" brechnen. Nun wendest du Polynomdivision an. Die erste "nullstelle" ist ein das kann ich dir verraten. die anderen sind nach der polynomdivision leicht zu bestimmen.

Gruß

Bezug
                
Bezug
Schnittpunktberechnung: Wieso Nullstellen?
Status: (Frage) beantwortet Status 
Datum: 15:28 So 09.12.2007
Autor: Theoretix

Aufgabe
bestimme die Schnittpunkte beider Funktionen...(siehe oben)

Hallo, danke schonmal.
Nur nochmal folgendes: Wenn ich beide Gleichungen gleichsetze bekomme ich eine Gleichung, die Alle Punkte enthält an denen sich beide schneiden würden oder?...Wieso muss man jetzt die Nullstellen(also x werte für die die funktion 0 wird) bestimmen?tut mir leid aber das habe ich noch nicht ganz verstanden..


Bezug
                        
Bezug
Schnittpunktberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 So 09.12.2007
Autor: Tyskie84

Hallo

Zeichne dir dochmal diese Funktionen auf:

f(x)=x² und g(x)=x

Wenn du die Nullstellen berechnen willst musst du doch die gleichung mit 0 gleichsetzen: Also ist der schnittpunkt mit der x-Achse gesucht. Die x-Achse beschreibt ja auch eine funktion nämlich h(x)=0. denn der y-wert auf der y-achse ist überall null.

Also f(x)=h(x) um nullstelle zu berechnen und auch g(x)=h(x) um die Nullstelle zu berechnen.

Jetzt zur schnittpunktberechnung. Gesucht ist hier NICHT der schnittpunkt der x-Achse sondern ein schnittpunkt mit einer anderen Funktion. also f(x)=g(x) hierbei ist [mm] g(x)\not=0 [/mm]

Ist es jetzt einleuchtend???

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]