matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungSchnittpunkte 2er Parabeln???
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Schnittpunkte 2er Parabeln???
Schnittpunkte 2er Parabeln??? < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkte 2er Parabeln???: Frage
Status: (Frage) beantwortet Status 
Datum: 19:18 Mo 12.09.2005
Autor: Blume05

hallo,ich habe heute seit langem wieder mit Parabeln rechnen müssen. kann mir bitte jemand erklären und evtl. auch vorrechnen wie ich die schnittpunkte der zwei parabeln berechnen kann?

1/2*(x-2)²-4         und              -1/4*(x-6)²+3


ich weiß nur das ich's mit dem Gleichsetzungsverfahren machen soll.. aber ehrlich gesagt hab ich keine ahnung mehr davon. und nächste woche schreib ich schon die klausur :-(  hoffe mir kann jemand helfen... schonmal thx im vorraus =)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittpunkte 2er Parabeln???: Hilfe
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 12.09.2005
Autor: Zwerglein

Hi, Blume,

na, dann setz' es halt gleich:

> 1/2*(x-2)²-4   = -1/4*(x-6)²+3

  
Multiplizier erst mal beide Seiten mit 4, damit die Brüche wegfallen:

[mm] 2(x-2)^{2} [/mm] - 16 = [mm] -(x-6)^{2}+12 [/mm]

Multipliziere die Quadrate aus (binom. F.)

[mm] 2(x^{2} [/mm] - 4x + 4) - 16 = [mm] -(x^{2} [/mm] - 12x + 36) +12

Klammern auflösen:

[mm] 2x^{2} [/mm] - 8x + 8 - 16 = [mm] -x^{2} [/mm] + 12x - 36 +12

Bissl vereinfachen:

[mm] 2x^{2} [/mm] - 8x - 8 = [mm] -x^{2} [/mm] + 12x - 24

Alles auf die linke Seite:

[mm] 3x^{2} [/mm] - 20x + 16  = 0

Quadratische Gleichung mit Formel lösen:

[mm] x_{1/2} [/mm] = [mm] \bruch{10 \pm \wurzel{13}}{3} [/mm]

mfG!
Zwerglein



Bezug
                
Bezug
Schnittpunkte 2er Parabeln???: Frage
Status: (Frage) beantwortet Status 
Datum: 20:35 Mo 12.09.2005
Autor: Blume05

ich versteh das letzte mit der formel jetzt nicht so ganz..  wie komm ich auf die 10 und wurzel 13?  

Bezug
                        
Bezug
Schnittpunkte 2er Parabeln???: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 12.09.2005
Autor: BennoO.

Hallo.
Es wurde eine sog. quadratische Ergänzung (oder die pq-Formel) angewendet. Einfaches Bsp: [mm] x^2+4x+2=0. [/mm] Du holst zuerst die 2 rüber, dann halbierst du die 4 und quadrierst das Ergebniss. Das machst du auf beiden Seiten der Gleichung, so das dann da steht [mm] x^2+4x+4=2. [/mm]  
[mm] x^2+4x+4 [/mm] ist dann nichts anderes mehr als [mm] (x+2)^2=2. [/mm] So, dann ziehst du die Wurzel uns löst nach x auf. Hoffe das war soweit verständlich.
viele Grüße Benno
    

Bezug
                                
Bezug
Schnittpunkte 2er Parabeln???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Mo 12.09.2005
Autor: Blume05

ich verstehe jetzt irgendwie nix mehr. hab jetzt schon von mehreren leuten etwas anderes gehört.. mein kopf qualmt sozusagen nur noch :( ich komm jetzt einfach ab 3x²-20x+16=0 nicht weiter...

Bezug
                                        
Bezug
Schnittpunkte 2er Parabeln???: p/q-Formel
Status: (Antwort) fertig Status 
Datum: 21:54 Mo 12.09.2005
Autor: Loddar

Hallo Blume,

[willkommenmr] !!


Bis zum Punkt [mm] $3x^2-20x+16 [/mm] \ = \ 0$ ist noch alles klar?

Um nun zunächst auf die Normalform [mm] $\red{1}*x^2+p*x+q [/mm] \ = \ 0$ zu kommen, teilen wir die o.g. Gleichung durch 3:

[mm] $x^2-\bruch{20}{3}x+\bruch{16}{3} [/mm] \ = \ 0$


Nun können wir die MBp/q-Formel [mm] ($\leftarrow$ [i]click it![/i]) anwenden mit: $p \ = \ -\bruch{20}{3}$ und $q \ = \ +\bruch{16}{3}$ . Dies einfach mal in die [[PQFormel|p/q-Formel]] einsetzen, und Du gelangst auf Zwerglein's Ergebnis. Gruß Loddar [/mm]

Bezug
                                                
Bezug
Schnittpunkte 2er Parabeln???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Di 13.09.2005
Autor: Blume05

hallo..
komischer weise habe ich immernoch nicht das ergebnis von zwerglein raus. ich bekomme niemals $ [mm] \bruch{10 \pm \wurzel{13}}{3} [/mm] $  als ergebnis raus. warum auch immer ???

Bezug
                                                        
Bezug
Schnittpunkte 2er Parabeln???: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Di 13.09.2005
Autor: Andre

$ [mm] \bruch{10 \pm \wurzel{13}}{3} [/mm] $  

ist auch falsch.

die richtige lösung von der gleichung ist:

$ [mm] \bruch{10 \pm 2 \wurzel{13}}{3} [/mm] $  


Bezug
                                                                
Bezug
Schnittpunkte 2er Parabeln???: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Di 13.09.2005
Autor: Blume05

ja und wie kamst du darauf???

Bezug
                                                                        
Bezug
Schnittpunkte 2er Parabeln???: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 13.09.2005
Autor: Andre

aus gehend von dem SS

$ [mm] 3x^{2} [/mm] $ - 20x + 16  = 0

ist ja p= [mm] \bruch{-20}{3} [/mm] und q=  [mm] \bruch{16}{3} [/mm]

mit pq formel hat man dann:

[mm] x_{1,2}= [/mm] - [mm] \bruch{p}{2} \pm \wurzel{\bruch{p^{2}}{4}-q} [/mm]  

= - [mm] \bruch{\bruch{-20}{3}}{2} \pm \wurzel{\bruch{\bruch{-20}{3}^{2}}{4}-\bruch{16}{3}} [/mm]  (das ² bezieht sich auf den bruch [mm] \bruch{-20}{3} [/mm] , ich konnte da irgendwie keine klammern setzen)

= [mm] \bruch{10}{3} \pm \wurzel{ \bruch{400}{12} - \bruch{16}{3}} [/mm]

= [mm] \bruch{10}{3} \pm \wurzel{ \bruch{52}{9}} [/mm]

= [mm] \bruch{10}{3} \pm \wurzel{ \bruch{1}{9}*4*13} [/mm]

=$ [mm] \bruch{10 \pm 2 \wurzel{13}}{3} [/mm] $

hätteste doch bestimmt auch selber gekonnt, ist ja nur einsetzen und n bisschen rechnen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]