matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittpunktuntersuchung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Schnittpunktuntersuchung
Schnittpunktuntersuchung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunktuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 10.11.2014
Autor: Mollisi1

Aufgabe
Untersuchen Sie, ob die Gerade und die Ebene Schnittpunkte miteinander haben:
g: x=(3/2/1) +r(1/-1/0) ; rER
E: x=(2/0/-1)+r(2/1/1)+T(-1/3/1)<, rER


Wie fängt man bei der Untersuchung an ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittpunktuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mo 10.11.2014
Autor: M.Rex


> Untersuchen Sie, ob die Gerade und die Ebene Schnittpunkte
> miteinander haben:
> g: x=(3/2/1) +r(1/-1/0) ; rER
> E: x=(2/0/-1)+r(2/1/1)+T(-1/3/1)<, rER
> Wie fängt man bei der Untersuchung an ?

Setze die Gerade und die Ebene Gleich, und löse dann das entstehende Gleichungssystem. Beachte aber, dass du den Parameter r hier zweimal verwendet hast, das musst du ändern, setze also gleich:

[mm] \vektor{3\\2\\1}+r\cdot\vektor{1\\-1\\0}=\vektor{2\\0\\1}+\red{s}\cdot\vektor{2\\1\\1}+t\cdot\vektor{-1\\3\\1} [/mm]

Das ergibt - komponentenweise - ein lineares Gleichungssystem mit drei Gleichungen und drei Parametern r, s und t.

Marius

Bezug
        
Bezug
Schnittpunktuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mo 10.11.2014
Autor: abakus


> Untersuchen Sie, ob die Gerade und die Ebene Schnittpunkte
> miteinander haben:
> g: x=(3/2/1) +r(1/-1/0) ; rER
> E: x=(2/0/-1)+r(2/1/1)+T(-1/3/1)<, rER

Hier sollte nicht in beiden Gleichungen jeweiuls "r" verwendet werden!
Wenn du den Faktor r für die Gerade nimmst, sollten die Faktoren für die Ebene anderes (z.B. s und t) sein.
>

> Wie fängt man bei der Untersuchung an ?

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
da nicht nach den Koordinaten eines eventuellen Schnittpunktes gefragt ist, bietet sich folgende Alternative an:
Die Gerade hat keinen Schnittpunkt mit der Ebene, wenn sie parallel zu ihr verläuft (und damit senkrecht auf dem Normalenvektor steht).
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]