matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Schranken, Max,Min
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Schranken, Max,Min
Schranken, Max,Min < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schranken, Max,Min: Allgemein zeigen
Status: (Frage) beantwortet Status 
Datum: 16:51 Sa 18.11.2006
Autor: Phoney

Hallo.

Bei einer endlichen Menge gibt es ja immer ein Max, Minimum, ist beschränkt.

Z. B. bei M:=[1,2,3,4,5,6,7,8] mit M Teilmenge IR

Dann ist das Max(M) = 8, Min(M)=1 sowie inf(M)=1 und sup(M)=8

Wie kann ich da jetzt nachweisen, dass diese Menge ein Maximum bzw. Minimum hat? Also ablesen kann ich es in diesem Fall wohl, aber zeigen nicht.

Oder reicht es einfach zu sagen:
Behauptung: Sup(M)=8.

Da 8 > [mm] a\8 [/mm] und $a [mm] \in [/mm] M$ -> Sup(M)=Max(M)=8

Was wäre dann bei allgemeinen Elementen.

[mm] N:=[a_1,a_2,a_3,...,a_{n-1},a_n] [/mm]

Würde ich dann einfach sagen,

[mm] \underbrace{a_1,a_2,a_3,...,a_{n-1}}_{=z} [/mm]

Behauptung [mm] Max(M)=Sup(M)=a_n [/mm]

Beweis: [mm] a_n [/mm] > z.

Das wäre zu billig, oder? Wie gehts kompliziert? Also wie gehts richtig ;-)

Vielen Dank
Phoney



        
Bezug
Schranken, Max,Min: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Di 28.11.2006
Autor: angela.h.b.


> Hallo.
>  
> Bei einer endlichen Menge gibt es ja immer ein Max,
> Minimum, ist beschränkt.
>  
> Z. B. bei [mm] M:=\{1,2,3,4,5,6,7,8\} [/mm] mit M Teilmenge IR
>  
> Dann ist das Max(M) = 8, Min(M)=1 sowie inf(M)=1 und
> sup(M)=8
>  
> Wie kann ich da jetzt nachweisen, dass diese Menge ein
> Maximum bzw. Minimum hat?

Die 8 liegt in der Menge, und jedes andere Element ist kleiner. Also ist 8 das Maximum.


zum Supremum: 8 ist offensichtlich obere Schranke der Menge.
Gabe es eine kleinere obere Schranke S, wäre das keine, denn für 8 [mm] \in [/mm] M S<8.


Das, was nun noch kommt, verstehe ich leider nicht. Was soll z sein?

Gruß v. Angela

> [mm]N:=[a_1,a_2,a_3,...,a_{n-1},a_n][/mm]
>  
> Würde ich dann einfach sagen,
>
> [mm]\underbrace{a_1,a_2,a_3,...,a_{n-1}}_{=z}[/mm]
>
> Behauptung [mm]Max(M)=Sup(M)=a_n[/mm]
>  
> Beweis: [mm]a_n[/mm] > z.
>  
> Das wäre zu billig, oder? Wie gehts kompliziert? Also wie
> gehts richtig ;-)
>
> Vielen Dank
>  Phoney
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]