matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenSchwache Lösungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Schwache Lösungen
Schwache Lösungen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwache Lösungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:03 Do 19.05.2016
Autor: Hias

Hallo,
momentan höre ich die Vorlesung der Partiellen Differentialgleichungen 2.
Darin wird die Lösung einer PDE durch Lösen einer Variationsgleichung bestimmt.
Die Lösungen die man dabei erhält sind schwache Lösungen, d.h. Funktionen die eine gewisse Gleichung lösen, z.B. einen Integralausdruck, bezüglich Testfunktionen.
Diese Funktionen erfüllen normalerweise nicht die nötigen Anforderungen an Glattheit um eine zulässige Lösung der ursprünglichen PDE zu sein.
Meine Frage ist nun folgende:
Ich möchte eine PDE lösen und kann "nur" eine schwache Lösung berechnen, was bringt mir das bezüglich dem Problem das ich eigentlich lösen möchte.
Sagen wir ich möchte das Problem
[mm] $-\Delta [/mm] u = f $  in [mm] $\Omega$ [/mm]
$u = g $ on [mm] $\partial \Omega$ [/mm]
lösen und bekomme nur eine Funktion $u [mm] \in C^1$ [/mm] welche eine schwache Lösung ist. Da es keine [mm] $C^2$ [/mm] Funktion ist, ist es keine starke Lösung.
Was kann ich nun mit diesem $u$ im richtigen Leben anfangen, also in der Anwendung? Ist es eine gute Approximation an eine eventuell existente [mm] $C^2$ [/mm] Lösung? Kann ich trotzdem mit diesem $u$ weiter arbeiten und was kann passieren, da es ja an sich nicht glatt genug ist?
Versucht man im richtigen Leben diese Funktionen anschließend zu glätten ( beispielsweise durch Faltung ) um eine starke Lösung zu erhalten?  

Wäre nett wenn mir jemand bisschen den Hintergrund erklären könnte, warum man eine ganze Theorie zur Herleitung schwacher Lösungen aufbaut, denn momentan kann ich mir nicht erklären, warum man sich mit schwachen Lösungen zufrieden gibt.

Danke im Voraus, Hias.

        
Bezug
Schwache Lösungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 21.05.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 5m 4. Diophant
ULinAAb/Kern und Bild bestimmen
Status vor 10m 3. Dom_89
DiffGlGew/Anwenden der Substitution
Status vor 3h 09m 2. fred97
IntTheo/mehrdim. part. Int., Doppelint
Status vor 9h 17m 7. HJKweseleit
USons/Bedeutung von dx, dt in Formel
Status vor 9h 52m 9. HJKweseleit
S8-10/Ableitung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]