matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisSchwarzsches Spiegelungsprinzi
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Schwarzsches Spiegelungsprinzi
Schwarzsches Spiegelungsprinzi < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwarzsches Spiegelungsprinzi: Frage zum Beweis
Status: (Frage) beantwortet Status 
Datum: 20:50 Di 07.10.2008
Autor: Aurelie

Aufgabe
Schwarzsches Spiegelungsprinzip

Sei $G [mm] \subset \IC$ [/mm] ein zur reellen Achse symmetrisches Gebiet mit [mm] $G=B\cup I\cup \overline{B}$, [/mm] wobei B={z [mm] \in [/mm] G | Im(z) > 0}, [mm] $\overline{B}=$ [/mm] {z [mm] \in [/mm] G | Im(z)<0}, I={z [mm] \in [/mm] G | Im(z) = 0}. Auf [mm] $B\cup [/mm] I$ sei eine stetige Funktion f gegeben, die auf B holomorph und auf I reellwertig ist.
Dann lässt sich f durch

[mm] \hat{f}(z) [/mm] :=  [mm] \begin{cases} f(z), & \mbox{für } z \in B\cup I \\ \overline{f(\overline{z})} & \mbox{für } z \in \overline{B} \end{cases} [/mm]

holomorph auf G fortsetzen.

Zum Beweis:
Zuerst zeigt man das [mm] \hat{f} [/mm] stetig auf G ist.
Jetzt zeigt man das für alle abgeschlossenen Dreiecke [mm] \Delta \subset [/mm] G gilt:

[mm] \integral_{\partial\Delta}{ \hat{f(z)} dz} [/mm] = 0 denn dann golgt mit dem Satz von Morera das f in G holomorph.

In meinem Skript steht zu diesem Schritt:

[mm] \Delta \subset [/mm] B oder [mm] \Delta \subset \overline{B}: [/mm]
Für [mm] \epsilon [/mm]  > 0:
[mm] G_{\epsilon}:= [/mm] {z [mm] \in [/mm] G | [mm] -\epsilon [/mm] < Im(z) < [mm] \epsilon} [/mm]

[mm] \int_{\partial \Delta}\hat{f}(z)dz [/mm] = [mm] \int_{\partial (\Delta \cap G_\epsilon)}\hat{f}(z)dz [/mm]

[mm] \Rightarrow \forall \epsilon [/mm] > 0 : [mm] \vmat{ \int_{\partial \Delta}\hat{f}(z)dz} \le \vmat{\int_{\partial (\Delta \cap G_\epsilon)}\hat{f}(z) dz} \underbrace{\rightarrow}_{\epsilon \downarrow 0} [/mm] 0

Das versteh ich im Einzelnen nicht mehr. Könnte mir das bitte jemand erläutern?

Danke und Gruß,
Aurelie

        
Bezug
Schwarzsches Spiegelungsprinzi: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Mi 08.10.2008
Autor: rainerS

Hallo Aurelie!

> Schwarzsches Spiegelungsprinzip
>  
> Sei [mm]G \subset \IC[/mm] ein zur reellen Achse symmetrisches
> Gebiet mit [mm]G=B\cup I\cup \overline{B}[/mm], wobei [mm]B=\{z \in[G | Im(z) > 0\}[/mm],
> [mm]\overline{B}=\{z \in G | Im(z)<0\}[/mm], [mm]I=\{z \in G | Im(z) = 0\}[/mm].
>  Auf [mm]B\cup I[/mm] sei eine stetige Funktion f
> gegeben, die auf B holomorph und auf I reellwertig ist.
> Dann lässt sich f durch
>  
> [mm]\hat{f}(z)[/mm] :=  [mm]\begin{cases} f(z), & \mbox{für } z \in B\cup I \\ \overline{f(\overline{z})} & \mbox{für } z \in \overline{B} \end{cases}[/mm]
>  
> holomorph auf G fortsetzen.
>  Zum Beweis:
>  Zuerst zeigt man das [mm]\hat{f}[/mm] stetig auf G ist.
> Jetzt zeigt man das für alle abgeschlossenen Dreiecke
> [mm]\Delta \subset[/mm] G gilt:
>  
> [mm]\integral_{\partial\Delta}{ \hat{f(z)} dz}[/mm] = 0 denn dann
> golgt mit dem Satz von Morera das f in G holomorph.
>  
> In meinem Skript steht zu diesem Schritt:
>  
> [mm]\Delta \subset[/mm] B oder [mm]\Delta \subset \overline{B}:[/mm]
>  Für [mm]\epsilon > 0:[/mm]
>  [mm]G_{\epsilon}:=\{z \in G | -\epsilon < Im(z) < \epsilon\}[/mm]
>  
> [mm]\int_{\partial \Delta}\hat{f}(z)dz = \int_{\partial (\Delta \cap G_\epsilon)}\hat{f}(z)dz[/mm]
>  
> [mm]\Rightarrow \forall \epsilon > 0 : \vmat{ \int_{\partial \Delta}\hat{f}(z)dz} \le \vmat{\int_{\partial (\Delta \cap G_\epsilon)}\hat{f}(z) dz} \underbrace{\rightarrow}_{\epsilon \downarrow 0} 0 [/mm]
>  
> Das versteh ich im Einzelnen nicht mehr. Könnte mir das
> bitte jemand erläutern?

Das ist auch sehr knapp aufgeschrieben. Zunächst einmal ist [mm] $\hat{f}$ [/mm] auf B und auf [mm] $\overline{B}$ [/mm] holomorph.

Der Trick besteht darin, das Integral über den Rand eines beliebigen abgeschlossenen Dreiecks zu zerlegen in ein Integral über eine Kurve in B, eines über eine Kurve in [mm] $\overline{B}$ [/mm] und "den Rest".

[mm] $G_{\epsilon}$ [/mm] ist doch ein Streifen der Dicke [mm] $2\epsilon$ [/mm] um die x-Achse in G. Für ein beliebiges Dreieck [mm] $\Delta$ [/mm] betrachtest du den Durchschnitt [mm] $\Delta \cap G_\epsilon$. [/mm] Dann hast du noch die Teile von [mm] $\Delta$, [/mm] die oberhalb bzw. unterhalb von [mm] $\Delta \cap G_\epsilon$ [/mm] liegen:

[mm] \Delta_1 = G\cap B \backslash (\Delta \cap G_\epsilon) \subset B [/mm]
[mm] \Delta_2 = G\cap \overline{B} \backslash (\Delta \cap G_\epsilon) \subset \overline{B} [/mm]
[mm] \Delta \cap G_\epsilon [/mm]

Da [mm] $\Delta [/mm] = [mm] \Delta_1 \cup (\Delta \cap G_\epsilon) \cup \Delta_2$ [/mm] ist, ist

[mm]\int\limits_{\partial \Delta}\hat{f}(z)dz = \int\limits_{\partial \Delta_1}\hat{f}(z)dz + \int\limits_{\partial (\Delta \cap G_\epsilon)}\hat{f}(z)dz + \int\limits_{\partial \Delta_2}\hat{f}(z)dz [/mm]

Da [mm] $\hat{f}$ [/mm] auf B und auf [mm] $\overline{B}$ [/mm] holomorph ist, sind das erste und das dritte Integral 0, also ist

  [mm]\int\limits_{\partial \Delta}\hat{f}(z)dz = \int\limits_{\partial (\Delta \cap G_\epsilon)}\hat{f}(z)dz[/mm]

Dann betrachtest du den Grenzübergang [mm] $\epsilon\rightarrow0$, [/mm] in dem das rechte Integral wegen der Stetigkeit von [mm] $\hat{f}$ [/mm] gegen 0 geht:

[mm] \\left| \int\limits_{\partial \Delta}\hat{f}(z)dz\right|= \left|\int\limits_{\partial (\Delta \cap G_\epsilon)}\hat{f}(z) dz}\right| \le \left|\int\limits_{\partial (\Delta \cap G_\epsilon)} |\hat{f}(z)| dz \right|\underbrace{\longrightarrow}_{\epsilon \downarrow 0} 0 [/mm]

  Viele Grüße
    Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]