matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSchwierigkeiten mit dem ln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Schwierigkeiten mit dem ln
Schwierigkeiten mit dem ln < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwierigkeiten mit dem ln: Fehlersuche
Status: (Frage) beantwortet Status 
Datum: 10:12 Sa 15.01.2005
Autor: Zai-Ba

Hi Ihr Mathecracks,

ich bin grad' im Physikforum am erklären und hab da nen Problem mit dem Umstellen einer Gleichung *rot-werd*

Originalgleichung lautet:
[mm] I=I_{0}*e^{-\alpha} [/mm]
Ziel ist :
[mm] \alpha(I, I_{0})=... [/mm]

Ein Ansatz war:
[mm] I=I_{0}*e^{-\alpha} [/mm]      |ln()
[mm] ln(I)=ln(I_{0})*(-\alpha) [/mm]
[mm] \alpha=-\bruch{ln(I)}{ln(I_{0})} [/mm]
mit eingesetzten Werten folgt: [mm] \alpha\approx-2,025 [/mm] (Physikalisch unmöglich)

Der andere Ansatz:
[mm] I=I_{0}*e^{-\alpha} [/mm]      | [mm] *e^{\alpha} [/mm]
[mm] I*e^{\alpha}=I_{0} [/mm]       | ln()
[mm] \alpha*ln(I)=ln(I_{0}) [/mm]
[mm] \alpha=\bruch{ln(I_{0})}{ln(I)} [/mm]
mit eingesetzten Werten folgt:  [mm] \alpha\approx0,49 [/mm]

Hier ist grad' noch nen Vorschlag aufgetaucht:
[mm] I=I_{0}*e^{-\alpha} [/mm]
[mm] \bruch{I}{I_{0}}=e^{-\alpha} [/mm]
[mm] \alpha=-ln(\bruch{I}{I_{0}}) [/mm]
Wo liegt(liegen) denn in welcher Umformung der(die) Fehler?!
...und wie geht's richtig?!

Danke,      Zai-Ba

        
Bezug
Schwierigkeiten mit dem ln: Rechenfehler
Status: (Antwort) fertig Status 
Datum: 10:44 Sa 15.01.2005
Autor: Clemens

Hallo liebe Physiker!

> ich bin grad' im
> Physikforum am erklären
> und hab da nen Problem mit dem Umstellen einer Gleichung
> *rot-werd*
>  
> Originalgleichung lautet:
>  [mm]I=I_{0}*e^{-\alpha} [/mm]
>  Ziel ist :
>  [mm]\alpha(I, I_{0})=... [/mm]
>  
> Ein Ansatz war:
>  [mm]I=I_{0}*e^{-\alpha}[/mm]      |ln()
>  [mm]ln(I)=ln(I_{0})*(-\alpha) [/mm]

Ihr müsst etwas strenger mit der Reihenfolge von Funktionen umgehen. Auf der rechten Seite der noch nicht bearbeiteten Gleichung in Zeile 1 steht ja ein Produkt, also im Prinzip der Wert der zweistelligen Funktion *. Jetzt wendet ihr auf beide Seiten der Gleichung die Funktion ln an. Dann darf sich die Reihenfolge nicht verändern, das heißt weiterhin bildet ihr zuerst das Produkt und dann den Wert unter der Funktion ln und nicht erst die Funktionswerte der Faktoren unter ln und dann das Produkt dieser Funktionswerte:

[mm] ln(I) = ln(I_{0}*e^{-\alpha}) [/mm]

Nun gibt es aber zum ln eine Funktionalgleichung ähnlich wie bei der Exponentialfunktion:

[mm] ln(a*b) = ln(a) + ln(b), a,b \in \IR_{+} [/mm]

Es gilt auch:

[mm] ln(a^{b}) = b*ln(a), a \in \IR_{+} [/mm]

Verwendet man diese Erkenntnis, ergibt sich:

[mm] ln(I) = ln(I_{0}) + ln(e^{-\alpha}) [/mm]

Je nach Definition der ln-Funktion ergibt sich dann auf einfachem oder schwierigem Wege:

[mm] ln(I) - ln(I_{0}) = -\alpha [/mm]

Wir folgern:

[mm] \alpha = ln(\bruch{I_{0}}{I}) [/mm]

> Der andere Ansatz:
>  [mm]I=I_{0}*e^{-\alpha}[/mm]      | [mm]*e^{\alpha} [/mm]
>  [mm]I*e^{\alpha}=I_{0}[/mm]       | ln()
>  [mm]\alpha*ln(I)=ln(I_{0}) [/mm]

Hier habt ihr wieder den gleichen Fehler gemacht.

> Hier ist grad' noch nen Vorschlag aufgetaucht:
>  [mm]I=I_{0}*e^{-\alpha} [/mm]
>  [mm]\bruch{I}{I_{0}}=e^{-\alpha} [/mm]
>  [mm]\alpha=-ln(\bruch{I}{I_{0}}) [/mm]

Das ist richtig, denn [mm] -1*ln(\bruch{I}{I_{0}}) [/mm] = [mm] ln((\bruch{I}{I_{0}})^{-1}) [/mm] = [mm] ln(\bruch{I_{0}}{I}) [/mm]

Gruß Clemens

Bezug
                
Bezug
Schwierigkeiten mit dem ln: Die Erleuchtung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Sa 15.01.2005
Autor: Zai-Ba

Danke Clemens,

hatte irgendwie seine Berechtigung mit dem *rot-werd*

DAnke für die schnelle Nachricht, ich geh' mir jetzt nen Türrahmen suchen um den Kopf dagegen zu hauen ;-)

cya,      Zai-Ba

PS: Aua!

Bezug
        
Bezug
Schwierigkeiten mit dem ln: :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:26 Sa 15.01.2005
Autor: Marcel

Hallo Zai-Ba,

hoffentlich hast du jetzt keine allzu große Beule an deinem Kopf. Sowas macht man aber auch nicht. [grins]

Aber unabhängig davon kommt mir deine Aufgabe doch sehr bekannt vor; vermutlich meintest du diesen Rechenweg, den ich vorgeschlagen hatte:
https://matheraum.de/read?i=36461
Okay, da hatte ich vielleicht nochmal erwähnen sollen, dass der [mm] $\ln$ [/mm] die Umkehrfunktion von der Exponentialfunktion [mm] ($exp(x)=e^x$) [/mm] ist und daher:
[mm]\ln(e^{-\alpha})=\ln(exp(-\alpha))=-\alpha[/mm] gilt.

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]