matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraSemidirektes Produkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Semidirektes Produkt
Semidirektes Produkt < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Semidirektes Produkt: keine Definition passt?
Status: (Frage) beantwortet Status 
Datum: 21:25 Di 26.11.2013
Autor: Maxga

Aufgabe
Zeige:
[mm] GL_n(K) [/mm] ist semidirektes Produkt von [mm] SL_n(K) [/mm] und [mm] K^{\times} [/mm] ,
wobei K ein Körper ist.

Hey,
habe derzeit ein wenig Probleme die Definitionen
eines semidirekten Produktes auf die obige Aufgabe anzuwenden,
weil irgendwie beide nicht passen.
[mm] K^{\times} [/mm] = [mm] \{ k \in K | k^{-1} exestiert \} [/mm] soweit ich weiß.
Jetzt kenne ich zwei Definitionen für semidirektes Produkt,
nämlich einmal:
(i) G ist äußeres semidirektes Produkt aus U und N. Dazu müssen U und N Gruppen sein und G=UxN muss gelten und es muss noch eine eigenschaft für die verknüpfung in der Gruppe gelten, die gerade erstmal nicht relevant ist.
[mm] GL_n(K) [/mm] = [mm] SL_n(K) [/mm] x [mm] K^{\times} [/mm] kann aber von der Struktur her irgendwie nicht sein, denn in [mm] GL_n(K) [/mm] sind Matrizen und keine Tupel.

(ii) G ist inneres semidirektes Produkt aus U und N. Dazu muss N normalteiler und U Untergruppe von G sein, es muss G=UN und G [mm] \cap [/mm] U = [mm] \{ e \} [/mm] muss gelten.
Das passt hier aber auch nicht, denn [mm] K^{\times} [/mm] ist keine Untergruppe von [mm] GL_n(K). [/mm]

Irgendwie passen also beide Definitionen nicht so richtig,
und ich weiß nicht genau, was ich hier zeigen soll?
Danke euch!

LG

        
Bezug
Semidirektes Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Di 26.11.2013
Autor: Schadowmaster

Hey,

ich würde das innere semidirekte Produkt empfehlen.
Du kannst [mm] $K^\*$ [/mm] in [mm] $GL_n(K)$ [/mm] einbetten, indem du ein $k [mm] \in K^\*$ [/mm] mit [mm] $k*I_n$ [/mm] ($k$ Mal die Einheitsmatrix) identifizierst.
Wie du dir leicht klar machen kannst, ist die so entstehende Untergruppe von [mm] $GL_n(K)$ [/mm] isomorph zu [mm] $K^\*$. [/mm]


lg

Schadow

Bezug
                
Bezug
Semidirektes Produkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:37 Di 26.11.2013
Autor: Maxga

Hey,
danke dir erstmal. Ja das klingt vernünftig,
und hatte ich mir auch schon überlegt.
Aber wenn ich das so mache, dann zeige ich doch, dass [mm] GL_n(K) [/mm] inneres Produkt aus [mm] H:=\{ k*I_n | k \in K^{\times} \} [/mm] und [mm] SL_n(K) [/mm] ist,
was irgendwie im Gegensatz zur Aufgabenstellung steht?
In den Definitionen ist nämlich von Isomorphie nirgendwo die Rede, sondern immer von Gleichheit von Mengen.

lg

Bezug
                        
Bezug
Semidirektes Produkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Do 28.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]