matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisSemimartingal
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Analysis" - Semimartingal
Semimartingal < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Semimartingal: Verständnis
Status: (Frage) beantwortet Status 
Datum: 11:28 Fr 16.12.2011
Autor: KomplexKompliziert

Aufgabe
1.Definition:
Ein stochastischer Prozess [mm] (X_t)_{t\geq 0} [/mm] heißt Semimartingal, wenn er als Summe eines Ito-Integrals und eines gewöhnlichen Integrals dargestellt werden kann:
[mm] X_t=X_0+\underbrace{\int_0^t Y_s dW_s}_{Ito-Integral} +\underbrace{\int_0^t Z_s ds}_{gewöhn. Integral}. [/mm]
Hierbei sind [mm] (Y_s)_{s\geq 0} [/mm] und [mm] (Z_s)_{s\geq 0} [/mm] Ito-integrierbare stochastische Prozesse.

Beispiel:
1. [mm] X_t=W_t =\underbrace{0}_{W_0}+\int_0^t \underbrace{1}_{Y_s} dWs+\int_0^t \underbrace{0}_{Z_s} [/mm] ds
2. [mm] X_t=a\cdot W_t+b\cdot [/mm] t= [mm] \underbrace{0}_{X_0}+\int_0^t \underbrace{a}_{Y_s} dWs+\int_0^t \underbrace{b}_{Z_s} [/mm] ds
3. [mm] X_t=W_t^2= \underbrace{0}_{X_0}+\int_0^t \underbrace{2W_s}_{Y_s} dWs+\int_0^t \underbrace{1}_{Z_s} [/mm] ds
denn es gibt nach der Ito-Formel für Wiener-Prozesse:
2.Definition:
Ist [mm] (W_t)_{t\geq 0} [/mm] ein Wiener Prozess, f eine zweimal stetig differenzierbare Funktion einer Variablen x und sind die o.g. Bedingungen erfüllt (führe ich hier nicht auf), so gilt
[mm] f(W_t)=f(0)+\int_0^t f'(W_s)dW_s+\frac{1}{2}\cdot \int_0^t f''(W_s)ds [/mm]

Hallo zusammen!
Die Beispiele 1. und 2. sind mir klar. Bei Beispiel 3 wende ich die 2. Definition an und erhalte
[mm] W_t^2=\int_0^t 2W_sdW_S+\int_0^t [/mm] 1 ds. Also ein Semimartingal.

Wie stelle ich nun  aber [mm] X_t=W_s^2-t [/mm] als Semimartingal dar, ebenfalls mit Definition 2?
[mm] X_t=W_s^2-t=\underbrace{0}_{X_0}+\int_0^t \underbrace{2W_s}_{Y_s} dWs-\int_0^t \underbrace{1}_{Z_s} [/mm] ds

Vielen Dank schon im Voraus!!

        
Bezug
Semimartingal: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Fr 16.12.2011
Autor: ito

[mm] $W_t^2 [/mm] - t = 2 [mm] \int_{o}^{t} W_s\, dW_s$ [/mm]

geht über die Ito-Formel

[mm] $X_t=W_t^2 [/mm] - t [mm] =:F(t,W_t)$ [/mm]

dann zeitabhängige Ito-Formel
[mm] $W_t^2 [/mm] - t= [mm] \int_{0}^{t} -1\,ds [/mm] + [mm] \int_{0}^{t} 2W_s\,dW_s [/mm] + [mm] \frac{1}{2} \int_{0}^{t} 2\,ds [/mm] = 2 [mm] \int_{0}^{t} W_s\,dW_s$ [/mm]

oder einfach Beispiel 3 umformen



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]