matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperSeparabele Körpererweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Separabele Körpererweiterung
Separabele Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separabele Körpererweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mi 15.09.2010
Autor: IG0R

Ich beschäftige mich gerade für eine Diplomprüfung mit dem Thema der Galoiserweiterung. Da tauchte beim durcharbeiten des Skriptes ein Problem auf und zwar:

Der Separabilitätsgrad einer Körpererweiterung L/K ist definiert als [mm] $[L:K]_s$ [/mm] die Anzahl der verschiedenen K-Homomorphismen $L [mm] \to [/mm] K$.
Eine endliche Körpererweiterung wird als separabel definiert, wenn [mm] $[L:K]_s [/mm] = [L:K]$ gilt, wobei $[L:K]$ der Grad der Körpererweiterung ist.

Soweit ist alles noch gut. Nun steht da folgender Satz:

Für L/K normal gilt [mm] $[L:K]_s [/mm] = L [mm] \cdot |Aut_K(L)|$ [/mm]
Was könnte denn in diesem Fall "$L [mm] \cdot |Aut_K(L)|$" [/mm] bedeuten. Also insbesondere das L. Könnten da die Betragsstriche vergessen worden sein? Oder wie würdet ihr das deuten?

        
Bezug
Separabele Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Mi 15.09.2010
Autor: statler

Mahlzeit!

> Ich beschäftige mich gerade für eine Diplomprüfung mit
> dem Thema der Galoiserweiterung. Da tauchte beim
> durcharbeiten des Skriptes ein Problem auf und zwar:
>  
> Der Separabilitätsgrad einer Körpererweiterung L/K ist
> definiert als [mm][L:K]_s[/mm] die Anzahl der verschiedenen
> K-Homomorphismen [mm]L \to K[/mm].

... K-Homomorphismen [mm]L \to L[/mm]

>  Eine endliche Körpererweiterung
> wird als separabel definiert, wenn [mm][L:K]_s = [L:K][/mm] gilt,
> wobei [mm][L:K][/mm] der Grad der Körpererweiterung ist.
>  
> Soweit ist alles noch gut. Nun steht da folgender Satz:
>  
> Für L/K normal gilt [mm][L:K]_s = L \cdot |Aut_K(L)|[/mm]
>  Was
> könnte denn in diesem Fall "[mm]L \cdot |Aut_K(L)|[/mm]" bedeuten.
> Also insbesondere das L. Könnten da die Betragsstriche
> vergessen worden sein? Oder wie würdet ihr das deuten?

Das L hat da nix zu suchen.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Separabele Körpererweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Mi 15.09.2010
Autor: IG0R

Zum Einen stimmt es sollte dort kein K stehen, aber auch kein L, sondern waren K-Automorphismen $L [mm] \to \overline{K}$ [/mm] gemeint.

Wenn für L/K normal gilt, dass [mm] $[L:K]_s [/mm] = [mm] |Aut_K(L)|$ [/mm] ist, wo ist denn da der Unterschied zur Definition? Wenn ich das richtig sehe ist das doch genau so definiert.

Bezug
                        
Bezug
Separabele Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mi 15.09.2010
Autor: statler


> Zum Einen stimmt es sollte dort kein K stehen, aber auch
> kein L, sondern waren K-Automorphismen [mm]L \to \overline{K}[/mm]
> gemeint.

Völlig richtig, und das leitet zum nächsten Teil über.

> Wenn für L/K normal gilt, dass [mm][L:K]_s = |Aut_K(L)|[/mm] ist,
> wo ist denn da der Unterschied zur Definition? Wenn ich das
> richtig sehe ist das doch genau so definiert.

Nimm mal [mm] \IQ(\wurzel[3]{2}) [/mm] über [mm] \IQ. [/mm] Das hat Grad 3, ist separabel, aber nicht normal. Es gibt 3 Einbettungen in den algebraischen Abschluß von [mm] \IQ. [/mm] Aber der einzige Automorphismus über [mm] \IQ [/mm] ist die Identität. Weil ich ja Nullstellen auf Nullstellen abbilden muß und mir die anderen fehlen.

Gruß
Dieter

Bezug
                                
Bezug
Separabele Körpererweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Mi 15.09.2010
Autor: IG0R

Achso, ja das macht Sinn. Dieser kleine aber doch erhebliche Unterschied war mir eben nicht aufgefallen. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]