matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperSeparable Erw., char K = p>0
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Separable Erw., char K = p>0
Separable Erw., char K = p>0 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separable Erw., char K = p>0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 Di 08.03.2011
Autor: Lippel

Aufgabe
Sei [mm] $L/K\:$ [/mm] eine Körpererweiterung in Charakteristik $p>0, [mm] \;\alpha \in [/mm] L$ algebraisch über [mm] $K\:$. [/mm] Zeigen Sie:
[mm] $\alpha$ [/mm] separabel über $K [mm] \gdw K(\alpha)=K(\alpha^p)$ [/mm]

Hallo,

ich bin mir bei der Rückrichtung des Beweises sehr unsicher.

[mm] "$\Rightarrow$" [/mm]
Zunächst gilt [mm] $K(\alpha^p) \subset K(\alpha)$, [/mm] wir betrachten die Erweiterung [mm] $K(\alpha)/K(\alpha^p)$. [/mm] Es ist [mm] $K(\alpha)/K$ [/mm] separabel, da [mm] $\alpha$ [/mm] separabel ist. Aufgrund der Transitivität der Separabilität ist dann auch [mm] $K(\alpha)/K(\alpha^p)$ [/mm] separabel, da [mm] $K(\alpha^p)$ [/mm] Zwischenkörper der Erweiterung [mm] $K(\alpha)/K$ [/mm] ist.
Es gilt [mm] $f:=X^p-\alpha^p \in K(\alpha^p)[X]$ [/mm] annuliert [mm] $\alpha \Rightarrow min_{K(\alpha^p)}(\alpha) \: [/mm] | [mm] \: [/mm] f$. Da wie oben gezeigt [mm] $K(\alpha)/K(\alpha^p)$ [/mm] separabel ist, hat [mm] $min_{K(\alpha^p)}(\alpha)$ [/mm] nur einfache Nullstellen in einem alg. Abschluss [mm] $\overline{K}$ [/mm] von [mm] $K(\alpha)$. [/mm] Es ist aber [mm] $f=(X-\alpha)^p$ [/mm] in [mm] $K(\alpha)[X] \Rightarrow min_{K(\alpha^p)}(\alpha) [/mm] = [mm] X-\alpha \Rightarrow \alpha \in \K(\alpha^p)$ [/mm] und somit [mm] $K(\alpha)=K(\alpha^p)$ [/mm]

[mm] "$\Leftarrow$" [/mm]
Ich weiß: wenn [mm] $f:=min_K(\alpha)$, [/mm] und wir nehmen an, f habe mehrfache Nullstellen, dann hat jede Nullstelle von f die Vielfachheit [mm] $p^r, [/mm] r [mm] \in \IN$ [/mm] und es gibt ein $g [mm] \in [/mm] K[X]: [mm] g(X^{p^r})=f(X)$. [/mm] Damit gibt es insbesondere ein $h [mm] \in [/mm] K[X]: [mm] h(X^p)=f(X) \Rightarrow h(\alpha^p) [/mm] = [mm] f(\alpha) [/mm] = 0 [mm] \Rightarrow min_K(\alpha^p) \: [/mm] | [mm] \: [/mm] h [mm] \Rightarrow [K(\alpha^p):K] \leq \frac{[K(\alpha):K]}{p}$ [/mm] im Widerspruch zu [mm] $K(\alpha)=K(\alpha^p)$. [/mm]
Stimmt das? Irgendwie kommt es mir komisch vor.

LG Lippel

        
Bezug
Separable Erw., char K = p>0: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Di 08.03.2011
Autor: felixf

Moin!

> Sei [mm]L/K\:[/mm] eine Körpererweiterung in Charakteristik [mm]p>0, \;\alpha \in L[/mm]
> algebraisch über [mm]K\:[/mm]. Zeigen Sie:
>  [mm]\alpha[/mm] separabel über [mm]K \gdw K(\alpha)=K(\alpha^p)[/mm]
>  
> ich bin mir bei der Rückrichtung des Beweises sehr
> unsicher.
>  
> "[mm]\Rightarrow[/mm]"
>  Zunächst gilt [mm]K(\alpha^p) \subset K(\alpha)[/mm], wir
> betrachten die Erweiterung [mm]K(\alpha)/K(\alpha^p)[/mm]. Es ist
> [mm]K(\alpha)/K[/mm] separabel, da [mm]\alpha[/mm] separabel ist. Aufgrund
> der Transitivität der Separabilität ist dann auch
> [mm]K(\alpha)/K(\alpha^p)[/mm] separabel, da [mm]K(\alpha^p)[/mm]
> Zwischenkörper der Erweiterung [mm]K(\alpha)/K[/mm] ist.
>  Es gilt [mm]f:=X^p-\alpha^p \in K(\alpha^p)[X][/mm] annuliert
> [mm]\alpha \Rightarrow min_{K(\alpha^p)}(\alpha) \: | \: f[/mm]. Da
> wie oben gezeigt [mm]K(\alpha)/K(\alpha^p)[/mm] separabel ist, hat
> [mm]min_{K(\alpha^p)}(\alpha)[/mm] nur einfache Nullstellen in einem
> alg. Abschluss [mm]\overline{K}[/mm] von [mm]K(\alpha)[/mm]. Es ist aber
> [mm]f=(X-\alpha)^p[/mm] in [mm]K(\alpha)[X] \Rightarrow min_{K(\alpha^p)}(\alpha) = X-\alpha \Rightarrow \alpha \in \K(\alpha^p)[/mm]
> und somit [mm]K(\alpha)=K(\alpha^p)[/mm]

[ok]

> "[mm]\Leftarrow[/mm]"
>  Ich weiß: wenn [mm]f:=min_K(\alpha)[/mm], und wir nehmen an, f
> habe mehrfache Nullstellen, dann hat jede Nullstelle von f
> die Vielfachheit [mm]p^r, r \in \IN[/mm] und es gibt ein [mm]g \in K[X]: g(X^{p^r})=f(X)[/mm].
> Damit gibt es insbesondere ein [mm]h \in K[X]: h(X^p)=f(X) \Rightarrow h(\alpha^p) = f(\alpha) = 0 \Rightarrow min_K(\alpha^p) \: | \: h \Rightarrow [K(\alpha^p):K] \leq \frac{[K(\alpha):K]}{p}[/mm]
> im Widerspruch zu [mm]K(\alpha)=K(\alpha^p)[/mm].
>  Stimmt das? Irgendwie kommt es mir komisch vor.

Doch, es stimmt.

LG Felix


Bezug
                
Bezug
Separable Erw., char K = p>0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:52 Di 08.03.2011
Autor: Lippel

Wunderbar, tausend Dank!!

LG Lippel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]