matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperSeparable Körpererweiterung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Separable Körpererweiterung
Separable Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separable Körpererweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 02.01.2011
Autor: mathequestion2

Aufgabe
Sei [mm]K = \IF_2(t)[/mm] und [mm]k = \IF_2(t^3)[/mm]. Beachte: [mm]K = k(t)[/mm] und [mm][K : k] = 3[/mm].
a) [mm]X^3-t^3 \in k[X][/mm] ist irreduzibel mit Zerfällungskörper [mm]K(\alpha )[/mm], wobei [mm]X^2+tX+t^2[/mm] das Minimalpolynom von [mm]\alpha[/mm] über K ist.
b) [mm]X^2 - t[/mm] ist irreduzibel in [mm]K(\alpha )[X][/mm].
c) Sei [mm]L=K (\beta )[/mm], wobei [mm]\beta[/mm] eine Nullstelle von [mm]X^2 - t[/mm] ist. Zeigen Sie: [mm]\beta[/mm] hat Minimalpolynom [mm]X^6 - t^3[/mm] über k, und [mm]k(\beta)/\beta[/mm] ist weder normal noch separabel.


Ich habe a),b) glaube ich.
Nur bei der c) steht noch die Leere. Kann mir das einer bitte Erklären. Ich weiß, was normal und separabel ist. Doch das Gegenteil zu zeigen fällt mir schwer. Ich nehme an es wäre separabel dieses [mm]k(\beta)/\beta[/mm] das sollte soch heißen es hat keine mehrfachen Nullstellen. Bringt michd as weiter?


        
Bezug
Separable Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 So 02.01.2011
Autor: felixf

Moin!

> Sei [mm]K = \IF_2(t)[/mm] und [mm]k = \IF_2(t^3)[/mm]. Beachte: [mm]K = k(t)[/mm] und
> [mm][K : k] = 3[/mm].
>  a) [mm]X^3-t^3 \in k[X][/mm] ist irreduzibel mit
> Zerfällungskörper [mm]K(\alpha )[/mm], wobei [mm]X^2+tX+t^2[/mm] das
> Minimalpolynom von [mm]\alpha[/mm] über K ist.
>  b) [mm]X^2 - t[/mm] ist irreduzibel in [mm]K(\alpha )[X][/mm].
>  c) Sei [mm]L=K (\beta )[/mm], wobei [mm]\beta[/mm] eine Nullstelle von [mm]X^2 - t[/mm]
> ist. Zeigen Sie: [mm]\beta[/mm] hat Minimalpolynom [mm]X^6 - t^3[/mm] über
> k, und [mm]k(\beta)/\beta[/mm] ist weder normal noch separabel.
>  
> Ich habe a),b) glaube ich.
>  Nur bei der c) steht noch die Leere. Kann mir das einer
> bitte Erklären. Ich weiß, was normal und separabel ist.
> Doch das Gegenteil zu zeigen fällt mir schwer. Ich nehme
> an es wäre separabel dieses [mm]k(\beta)/\beta[/mm] das sollte soch
> heißen es hat keine mehrfachen Nullstellen. Bringt michd
> as weiter?

Erstmal meinst du sicher [mm] $k(\beta) [/mm] / k$ und nicht [mm] $k(\beta) [/mm] / [mm] \beta$, [/mm] oder?

Ich nehme mal an, du hast dir schon ueberlegt dass das Minimalpolynom $f = [mm] X^6 [/mm] - [mm] t^3$ [/mm] ist.

Jetzt ist $f' = 6 [mm] \cdot X^5 [/mm] = 0$ (da Charakteristik 2). Damit haben $f$ und $f'$ einen gemeinsamen Teiler, womit $f$ mehrfache Nullstellen hat. Damit ist [mm] $k(\beta) [/mm] / k$ schonmal nicht separabel.

Das kann man auch expliziter machen: mache Polynomdivison, indem du [mm] $X^6 [/mm] - [mm] t^3$ [/mm] durch $(X - [mm] \beta)^2 [/mm] = [mm] X^2 [/mm] + [mm] \beta^2 [/mm] = [mm] X^2 [/mm] + t$ teilst (beachte, dass in [mm] $\IF_2$ [/mm] Minus gleich Plus ist). Du wirst sehen, dass dies aufgeht.

Um zu zeigen, dass es nicht normal ist, reicht es aus zu zeigen, dass [mm] $X^6 [/mm] - [mm] t^3$ [/mm] (was ja einen Linearfaktor ueber [mm] $k(\beta)$ [/mm] hat, naemlich $X - [mm] \beta$) [/mm] ueber [mm] $k(\beta)$ [/mm] nicht in Linearfaktoren zerfaellt. Dabei hilft dir sicher a) weiter.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]