Sigma-Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:45 Di 06.01.2015 | Autor: | James90 |
Hi!
Sei [mm] (\Omega,F,\mu) [/mm] ein Maßraum. Eine Menge [mm] A\subseteq\Omega [/mm] heißt [mm] \mu [/mm] Nullmenge, falls ein [mm] $B\in [/mm] F$ existiert mit [mm] \mu(B)=0 [/mm] und [mm] $A\subseteq [/mm] B$.
Z.z.: [mm] F':=\{A\subseteq\Omega\mid\exists B\in F: A\Delta B \mu-Nullmenge\} [/mm] ist eine Sigma-Algebra.
Also z.z.: [mm] F'=\{A\subseteq\Omega\mid\exists B\in F \exists C\in F : \mu(C)=0 \wedge A\Delta B\subseteq C\} [/mm] ist eine Sigma-Algebra.
1) z.z.: [mm] $\Omega\in [/mm] F'$. Beweis: Es ist [mm] \Omega\subseteq\Omega [/mm] und damit ist [mm] A:=\Omega [/mm] ein Kandidat für F'. In der Tat: Mit [mm] $B:=\Omega\in [/mm] F$ und [mm] $C:=\emptyset\in [/mm] F$ ist [mm] \mu(C)=0 [/mm] und [mm] $A\Delta B=((\Omega\setminus\Omega)\cup(\Omega\setminus\Omega))=\emptyset\cup\emptyset=\emptyset\subseteq\emptyset=C$. [/mm] Damit ist [mm] $\Omega\in [/mm] F'$.
2) z.z.: [mm] $D\in F'\Rightarrow D^c\in [/mm] F'$. Beweis: Sei [mm] $D\in [/mm] F'$, also [mm] D\subseteq\Omega [/mm] und [mm] $\exists B\in F\exists C\in [/mm] F$ mit [mm] \mu(C)=0 [/mm] und [mm] $D\Delta B\subseteq [/mm] C$. [mm] $D^c\in [/mm] F'$. Es ist [mm] D\subseteq\Omega [/mm] und somit [mm] D^c=\Omega\setminus\ D=\Omega\cup D^c\subseteq\Omega [/mm] und somit ein Kandidat für F'. zu zeigen bleibt [mm] $\exists B\in [/mm] F [mm] \exists C\in [/mm] F$ mit [mm] $D^c\Delta B\subseteq [/mm] C$.
Hier komme ich nicht weiter. Kann mir bitte jemand weiterhelfen?
3) z.z.: [mm] $A_1,A_2,\ldots\in F'\Rightarrow\bigcup_{n\in\IN}A_n\in [/mm] F'$. Beweis: [mm] $A_1,A_2,\ldots\in [/mm] F'$, also [mm] A_1,A_2,\ldots\subseteq\Omega [/mm] und [mm] $\exists B_1,B_2,\ldots\in [/mm] F$ und [mm] $\exists C_1,C_2,\ldots\in [/mm] F$ mit [mm] \mu(C_i)=0 [/mm] und [mm] $A_i\Delta B_i\subseteq C_i$. [/mm] Mit [mm] $C_i:=\emptyset\in [/mm] F$ und [mm] $B_i:=A_i\in [/mm] F$ folgt [mm] \bigcup_{n\in\IN}(A_i\Delta B_i)=\bigcup_{n\in\IN}((A_i\setminus A_i)\cup(A_i\setminus A_i))=\emptyset\subseteq\emptyset=C. [/mm] Damit ist [mm] \bigcup_{n\in\IN}A_n\in [/mm] F'.
Hier bin ich sehr unsicher..... vielen Dank für jede Hilfe. :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:33 Mi 07.01.2015 | Autor: | Teufel |
Hi!
1.
Sieht gut aus.
2.
Hier muss man manchmal etwas rumspielen, aber bei solchen Aufgaben ist die Lösung meistens schon recht nah. Du hast also ein [mm] $D\in [/mm] F'$ gegeben und kennst [mm] $B,C\in [/mm] F$ mit [mm] $D\Delta B\subseteq [/mm] C$ [mm] (\mu(C)=0).
[/mm]
Nun willst du ein B', C' finden mit [mm] $D^c\Delta B'\subseteq [/mm] C'$ [mm] (\mu(C')=0). [/mm] Die zentrale Beobachtung ist nun: [mm] $D\Delta [/mm] B = [mm] D^c \Delta B^c$. [/mm] Damit kommst du sicher weiter.
3.
Hier gehst du von [mm] $A_i\in [/mm] F$ aus, aber das muss ja nicht gelten. Ohne, dass ich das jetzt durchrechne: hier würde ich drauf tippen, dass B einfach wieder die Vereinigung der [mm] B_i [/mm] ist und C die Vereinigung der [mm] C_i.
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:24 Do 08.01.2015 | Autor: | James90 |
Hi Teufel und vielen Dank für deine Antworten :)
> 2.
> Hier muss man manchmal etwas rumspielen, aber bei solchen
> Aufgaben ist die Lösung meistens schon recht nah. Du hast
> also ein [mm]D\in F'[/mm] gegeben und kennst [mm]B,C\in F[/mm] mit [mm]D\Delta B\subseteq C[/mm]
> [mm](\mu(C)=0).[/mm]
> Nun willst du ein B', C' finden mit [mm]D^c\Delta B'\subseteq C'[/mm]
> [mm](\mu(C')=0).[/mm] Die zentrale Beobachtung ist nun: [mm]D\Delta B = D^c \Delta B^c[/mm].
> Damit kommst du sicher weiter.
Wow!!! Darauf wäre ich niemals gekommen. Wie kann [mm] D\Delta [/mm] B = [mm] D^c \Delta B^c [/mm] zeigen? Als Venn-Diagramm sieht es richtig aus, aber das ist natürlich kein Beweis. Es müsste mit einer Wahrheitstabelle funktionieren, aber das scheint sehr aufwendig. Gibt es dafür einen simplen Beweis? [mm] $D\Delta [/mm] B [mm] \subseteq D^c \Delta B^c$ [/mm] und [mm] $D\Delta [/mm] B [mm] \supseteq D^c \Delta B^c$ [/mm] sieht auch ziemlich aufwendig aus.
z.z.: [mm] $D\in F'\Rightarrow D^c\in [/mm] F'$. Beweis: Sei [mm] $D\in [/mm] F'$, also existieren [mm] $B,C\in [/mm] F$ mit [mm] $D\Delta B\subseteq [/mm] C$. Es ist [mm] $D\Delta B=D^c \Delta B^c$, [/mm] also [mm] D^c \Delta B^c\subseteq [/mm] C. Mit [mm] $B'=B^c\in [/mm] F$ und [mm] $C':=C\in [/mm] F$ ist dann [mm] $D^c\Delta B'\subseteq [/mm] C'$ und [mm] \mu(C')=0. [/mm] Damit ist [mm] $D^c\in [/mm] F'$.
> 3.
> Hier gehst du von [mm]A_i\in F[/mm] aus, aber das muss ja nicht
> gelten. Ohne, dass ich das jetzt durchrechne: hier würde
> ich drauf tippen, dass B einfach wieder die Vereinigung der
> [mm]B_i[/mm] ist und C die Vereinigung der [mm]C_i.[/mm]
Ich Dummkopf. Seien [mm] A_1,A_2,\ldots\in [/mm] F', also existieren [mm] $B_1,B_2,\ldots\in [/mm] F$ und [mm] $C_1,C_2,\ldots\in [/mm] F$ mit [mm] \mu(C_i)=0 [/mm] und [mm] $A_i\Delta B_i\subseteq C_i$. [/mm] Mit [mm] $B:=\bigcup_{n\in\IN}B_n\in [/mm] F$ und [mm] $C:=\bigcup_{n\in\IN}C_n\in [/mm] F$ ist dann offensichtlich auch [mm] $(\bigcup_{n\in\IN}A_n)\Delta B\subseteq [/mm] C$ und [mm] \mu(C)=0, [/mm] denn abzählbare Vereinigung von Nullmengen ist eine Nullmenge. Damit ist [mm] $\bigcup_{n\in\IN}A_n\in [/mm] F'$.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:08 Fr 09.01.2015 | Autor: | Teufel |
Hi! :)
Am einfachsten geht es vermutlich so:
[mm] $X\Delta [/mm] Y [mm] =(X\setminus [/mm] Y) [mm] \cup (Y\setminus [/mm] X) = (X [mm] \cap Y^c) \cup (Y\cap X^c)$
[/mm]
Nun mach das gleiche mal mit [mm] $X^c\Delta Y^c$!
[/mm]
Der Rest sieht gut so aus!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:13 Fr 09.01.2015 | Autor: | James90 |
Vielen Dank für deine Hilfe! :)
|
|
|
|