matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSigma Algebra
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Sigma Algebra
Sigma Algebra < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Mo 03.12.2007
Autor: barsch

Aufgabe
Sei [mm] \Omega=\IN. [/mm]

Handelt es sich bei folgenden Mengensystem [mm] \mathcal{A} [/mm] um eine [mm] \sigma-Algebra? [/mm]

[mm] \mathcal{A}=\{\{1,2,...,n\}:n\in\IN_0\}\cup\{\{n,n+1,...\}:n\in\IN\} [/mm]

Hi,

erst einmal ist es ja nicht schlecht, sich bewusst zu machen, was eine [mm] \sigma-Algebra [/mm] kennzeichnet:


[mm] \mathcal{A} [/mm] ist [mm] \sigma-Algebra\gdw [/mm]

1. [mm] \Omega\in\mathcal{A} [/mm]
2. [mm] A\in\mathcal{A}\Rightarrow\overline{A}\in\mathcal{A}, [/mm] wobei [mm] \overline{A} [/mm] Komplement von A.
3. [mm] j\in\IN: A_j\in\mathcal{A}\Rightarrow\cup_{j\in\IN}A_j\in\mathcal{A} [/mm]

Jetzt weiß ich aber schon nicht, ob [mm] \IN=\Omega\in\mathcal{A}. [/mm]

Ich würde behaupten, [mm] \IN=\Omega\in\mathcal{A} [/mm] wegen [mm] \{\{n,n+1,...\}:n\in\IN\} [/mm]

Aber was ist dann mit 2. und 3.?

Vielleicht kann mir mal jemand auf die Sprünge helfen.

MfG barsch

Ich habe diese Frage in keinem anderen Forum gestellt.


        
Bezug
Sigma Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mo 03.12.2007
Autor: andreas

hi

> Sei [mm]\Omega=\IN.[/mm]
>  
> Handelt es sich bei folgenden Mengensystem [mm]\mathcal{A}[/mm] um
> eine [mm]\sigma-Algebra?[/mm]
>  
> [mm]\mathcal{A}=\{\{1,2,...,n\}:n\in\IN_0\}\cup\{\{n,n+1,...\}:n\in\IN\}[/mm]
>  Hi,
>  
> erst einmal ist es ja nicht schlecht, sich bewusst zu
> machen, was eine [mm]\sigma-Algebra[/mm] kennzeichnet:
>  
>
> [mm]\mathcal{A}[/mm] ist [mm]\sigma-Algebra\gdw[/mm]
>  
> 1. [mm]\Omega\in\mathcal{A}[/mm]
>  2. [mm]A\in\mathcal{A}\Rightarrow\overline{A}\in\mathcal{A},[/mm]
> wobei [mm]\overline{A}[/mm] Komplement von A.
>  3. [mm]j\in\IN: A_j\in\mathcal{A}\Rightarrow\cup_{j\in\IN}A_j\in\mathcal{A}[/mm]
>  
> Jetzt weiß ich aber schon nicht, ob
> [mm]\IN=\Omega\in\mathcal{A}.[/mm]
>  
> Ich würde behaupten, [mm]\IN=\Omega\in\mathcal{A}[/mm] wegen
> [mm]\{\{n,n+1,...\}:n\in\IN\}[/mm]

ja, das stimmt im prinzip schon, muss man aber natürlich etwas genauer aufschreiben (das heißt wähle hier $n = ...$).


> Aber was ist dann mit 2. und 3.?

2. ist auch erfüllt, wie man sich leicht klarmacht. überleg dir mal bei 3., ob die vereinigung von zwei mengen aus [mm] $\mathcal{A}$ [/mm] auch wieder in [mm] $\mathcal{A}$ [/mm] liegt. wähle zum beispiel konkret ein $A [mm] \in \{\{1,2,...,n\}:n\in\IN_0\} \subseteq \mathcal{A}$ [/mm] und ein $B [mm] \in \{\{n,n+1,...\}:n\in\IN\} \subseteq \mathcal{A}$. [/mm] gilt dann stets $A [mm] \cup [/mm] B [mm] \in \mathcal{A}$ [/mm] (was wären hier geeignete [verschiedene] $n$'s für $A$ und $B$ - welches $n$ sollte größer sein)?

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]