matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieSigma Algebra, Extremalpunkte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Sigma Algebra, Extremalpunkte
Sigma Algebra, Extremalpunkte < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma Algebra, Extremalpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Sa 17.04.2010
Autor: Aquilera

Aufgabe
Sei [mm] \Omega [/mm] eine abzählbare Menge mit [mm] \sigma [/mm] -Algebra [mm] \mathcal{A} [/mm] = [mm] \mathcal{P}(\Omega). [/mm] Sei M die Menge der Wahrscheinlichkeitsverteilungen auf [mm] (\Omega, \mathcal{A}). [/mm]

a) Zeigen Sie, dass M konvex ist
b) Bestimmen sie die Extremalpunkte von M.
Hinweis: ein Element x einer konvexen Menge V heißt extremal, falls aus x=ty+(1-t)z mit t [mm] \in [/mm] (0,1) und x,y [mm] \in [/mm] V schon folgt, dass y=z=x.
c) ZEigen Sie, dass sich jedes [mm] \mathcal{P} \in [/mm] M als "Mischung" von Extremalpunkten darstellen lässt, d.h.

P = [mm] \summe_{i=1} \alpha_{i}P_{i} [/mm] wobei [mm] \alpha_{i}>=0, \summe_{i=1} \alpha_{i}=1 [/mm] und [mm] P_{i} [/mm] extremal

Ich glaub, ich steh im Wald, ich weiß gar nicht, was diese Aufgabe von mir will und was sie mit Stochastik zu tun hat. Ausser dem Wort Wahrscheinlichkeitsverteilung finde ich hier nix stochastisches drin.

Hat jemand nen tip für mich, was ich hier tun soll und vor allem- was hat das denn mit Stochastik zu tun?

*verzweifeltgugg*
Susann

        
Bezug
Sigma Algebra, Extremalpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Sa 17.04.2010
Autor: SEcki


>  Ich glaub, ich steh im Wald, ich weiß gar nicht, was
> diese Aufgabe von mir will und was sie mit Stochastik zu
> tun hat. Ausser dem Wort Wahrscheinlichkeitsverteilung
> finde ich hier nix stochastisches drin.

Ich schon. Was will man in der Stochastik? Man untersucht Verteilungen und ihre Eigenschaften - und das wird in der Aufgabe gemacht - man klassifiziert in dieser Aufgabe alle W'keit verteilungen auf abzählbaren Räumen! Und auf eine andere Art und Weise als man es wohl gewohnt ist - durch Extremalpunkte. Hört sich nett an, imo.

> Hat jemand nen tip für mich, was ich hier tun soll und vor
> allem- was hat das denn mit Stochastik zu tun?

Also, die Verteilungen sind Abbildungen, dh wenn du zwei Verteilungen a, b geg. hast, musst du zeigen, dass [m]t*a+(1-t)*b[/m] wieder eine Verteilung ist. Wodurch sind Verteilungen den charaktisiert? Was muss alles gelten?

Zum zweiten Teil: Betrachte mal für jedes [m]w\in\Omega[/m] das Maß des Punktes w: [m]x=(t*a+(1-t)*b)(w)[/m]. Wenn die Verteilung extremal ist, kann die sich ja nicht ändern für den Punkt - das solltest du dir erstmal klar machen, dass dies aus der Bedingung folgt. (Kann denn a oder b für w größere Werte als x annehmen?). So, jetzt überlege, wie du interpolieren kannst, wenn die Werte für einzelne Punkte nicht aus 0, 1 sind.

Zum dritten Teil: wenn dir klar ist, was die Extremalen sind, dann ist dies auch schnell gezeigt.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]