matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenSignatur einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Signatur einer Matrix
Signatur einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signatur einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Di 09.10.2007
Autor: Zerwas

Aufgabe
[mm] A=\pmat{1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 2 \\ 1 & 0 & 2 & 0 } [/mm]
(a) Bestimmen Sie die Signatur der durch die Matrix [mm] A\in M_4(\IR) [/mm] dargestellten symmetrischen Bilinearform. Das heißt: Geben Sie die Anzahl der positiven, negativen und verschwindenden Eigenwerte (gezählt mit Vielfachheit) einer darstellenden Matrix an.

(b) Was sagt der Sylvestersche Trägheitssatz über symmetrische positiv definite Bilinearformen auf endliche dimensionalen [mm] \IR [/mm] Vektorräumen aus?

Meine Überlegung ist die, dass ich vom Sylvesterschen Trägheitssatz ausgehe welcher besagt, dass die Signatur einer symetrischen Bilinearform nicht von deren Basis abhängt. Also kann ich Äquivalenzumformungen mit der Matrix A durchführen ohne die Signatur zu verändern.

Also:
[mm] \pmat{1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 2 \\ 1 & 0 & 2 & 0 } \to \pmat{1 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & 1 & 1 \\ 0 & -1 & 1 & -1 } \to \pmat{1 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 0 } \to \pmat{1 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -2 } [/mm]
Dies ist eine Dreiecksmatrix, deren EW auf der Hauptdiagonalen stehen [mm] \Rightarrow [/mm] 2 pos 2 neg & kein verschw.

[mm] \Rightarrow [/mm] Signatur= (2,2,0)

Geht das soweit so?

zu (b)
Hierzu habe ich leider nichts gefunden ...
Es gilt jedoch auf jeden Fall das oben genannte... was macht die Einschränkung auf positiv definite Bilinearformen jedoch aus?


Gruß Zerwas


Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.

        
Bezug
Signatur einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Di 09.10.2007
Autor: Fulla

Hallo Zerwas!

Zu a)
Richtig, die Matrix hat zwei positive und zwei negative Eigenwerte. (Aber die EW sind nicht 1, -1, 2, -2... sonder ziemlich kompliziert: z.B. [mm] $\frac{3}{4}+\frac{1}{4}\sqrt5+\frac{1}{4}\sqrt{62+22\sqrt5}$ [/mm]

Zu b)
In meinem Skript ist der Trägheitssatz von Sylvester so formuliert:

Sei V ein endlich-dimensionaler [mm] $\mathbb{R}$-Vektorraum, [/mm] und sei [mm] \psi [/mm] : [mm] V\times V\rightarrow\mathbb{R} [/mm] eine symmetrische Bilinearform. Dann gibt es eine Basis b von V so, dass die Fundamentalmatrix von [mm] \psi [/mm] bezüglich b die Form
[Matrix mit Diagonaleinträgen 1,...,1,-1,...,-1,0...0 sonst alles 0]
hat. Eine solche Basis nennen wir Sylvester-Basis von [mm] \psi [/mm] .

Ich denke die Antwort auf b) ist, dass es bei reellen Bilinearformen eben diese Form mit 1, -1, 0 auf der Diagonalen gibt. Siehe auch []hier.


Ich hoffe das hilft dir ein bisschen weiter...
Lieben Gruß,
Fulla

Bezug
                
Bezug
Signatur einer Matrix: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:14 Di 09.10.2007
Autor: Zerwas

vielen dank erstmal ... zu(b) hört sich logisch an :)

zu (a) ich habe mir eben ob der Kompliziertheit der EW der "Original-Matrix" die Umformung überlegt, da ich die Aufgabe im Kopf zu lösen sein sollte.

Wobei das Ergebniss die EW ja nicht explizit erfordert und das also so gehen sollte oder?

Gruß Zerwas

Bezug
                        
Bezug
Signatur einer Matrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 11.10.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]