matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSignifikanztest von Rangkorr.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Signifikanztest von Rangkorr.
Signifikanztest von Rangkorr. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signifikanztest von Rangkorr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Fr 26.11.2010
Autor: future-limit

Hallo,

ich habe einen Sig.test mit dem ich auf Unabhängigkeit von Rangkorrelationskoefizienten teste:

Hypothese:

[mm] H_{0}: [/mm] rs(X,Y)=0 gegen [mm] H_{1}:re(X,Y)\not= [/mm] 0


Wenn ich [mm] H_{0} [/mm] ablehne, dann ist auf dem [mm] \alpha-Niveau [/mm] die Abhängigkeit statistiasch signifikanz. D.h. mit einer Wahrscheinlichkeit von [mm] \alpha [/mm] ist meine Aussage der Abhängigkeit falsch.

Wenn ich nun mein [mm] H_{0} [/mm] nicht wiederlegen kann, dann kann ich daraus nicht schließen, da es sich um Unabhägigkeit handelt, da ich den Fehler 2. Art nicht betrachtet habe.

Ist das soweit richtig?

Nun ist mein Problem, wie kann ich nun den Fehler 2. Art bestimmen? Oder anders, gibt es einen Test, der mir die Unabhängigkeit bestätigt, so dass ich mir mit einer möglichst hohen Wahrscheinlichkeit sicher sein kann, dass es sich um Unabhängigkeit handelt?

Vielen Dank schon mal im Voraus

Olli

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Signifikanztest von Rangkorr.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Fr 26.11.2010
Autor: luis52

Moin Olli,

[willkommenmr]

> Wenn ich nun mein [mm]H_{0}[/mm] nicht wiederlegen kann, dann kann
> ich daraus nicht schließen, da es sich um Unabhägigkeit
> handelt, da ich den Fehler 2. Art nicht betrachtet habe.
>  
> Ist das soweit richtig?


Nein, nur dass *dieser* Test keinen Hinweis darauf gibt, dass die Nullhypothese der Unabhaengigkeit abzulehnen ist. Es heisst nocht nicht, dass sie zutrifft.

>
> Nun ist mein Problem, wie kann ich nun den Fehler 2. Art
> bestimmen? Oder anders, gibt es einen Test, der mir die
> Unabhängigkeit bestätigt, so dass ich mir mit einer
> möglichst hohen Wahrscheinlichkeit sicher sein kann, dass
> es sich um Unabhängigkeit handelt?

Wie sollte bei diesem Test denn die Nullhypothese aussehen?

vg Luis


Bezug
                
Bezug
Signifikanztest von Rangkorr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Fr 26.11.2010
Autor: future-limit


> Nein, nur dass *dieser* Test keinen Hinweis darauf gibt,
> dass die Nullhypothese der Unabhaengigkeit abzulehnen ist.
> Es heisst nocht nicht, dass sie zutrifft.

Ok, das wollte ich eigentlich so ausdrücken.


> > Nun ist mein Problem, wie kann ich nun den Fehler 2. Art
> > bestimmen? Oder anders, gibt es einen Test, der mir die
> > Unabhängigkeit bestätigt, so dass ich mir mit einer
> > möglichst hohen Wahrscheinlichkeit sicher sein kann, dass
> > es sich um Unabhängigkeit handelt?
>
> Wie sollte bei diesem Test denn die Nullhypothese
> aussehen?


Ja das ist eine gute Frage! Vielleicht so was wie

[mm] H_{0}: rs(X,Y)\not=0 [/mm]

dann könnte ich doch sagen, wenn [mm] H_{0} [/mm] abgelehnt wir, dass rs mit einer gewissen Wahrscheinlichkeit Unabhägig ist, oder?

Olli

Bezug
                        
Bezug
Signifikanztest von Rangkorr.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Fr 26.11.2010
Autor: luis52


> > Wie sollte bei diesem Test denn die Nullhypothese
> > aussehen?
>  
>
> Ja das ist eine gute Frage!

Danke. ;-)


> Vielleicht so was wie
>  
> [mm]H_{0}: rs(X,Y)\not=0[/mm]
>  
> dann könnte ich doch sagen, wenn [mm]H_{0}[/mm] abgelehnt wir, dass
> rs mit einer gewissen Wahrscheinlichkeit Unabhägig ist,
> oder?
>  


Ich fuerchte, das ist zu allgemein. Bedenke: Du brauchst die Verteilung einer Pruefgroesse unter [mm] $H_0$. [/mm] Deine Setzung ist aber nicht hinreichend konkret. Im Gegensatz dazu *ist* die Unkorreliertheitshypothese (nicht Unabhaengigkeit!) [mm] $H_0:rs(X,Y)=0$ [/mm] konkret.

vg Luis


Bezug
                                
Bezug
Signifikanztest von Rangkorr.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:04 Mo 29.11.2010
Autor: future-limit

Also besteht im Grunde keine Möglichkeit eine signifikant gesicherte Aussage darüber zu treffen, dass eine Unabhängigkeit vorliegt?
Gibt es vielleicht ein andere Mehode oder Herangehensweise, mit der man eine signifikante Aussage über Abhängigkeit / Unabhägigkeit treffen kann?

Gruß
Olli



Bezug
                                        
Bezug
Signifikanztest von Rangkorr.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 01.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]