Simulation eines Markov-Prozes < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:58 Do 14.09.2017 | Autor: | Max85 |
Aufgabe | Simulation eines Erwartungswertes nach Markov-Prozess (inhomogen, transient) |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe eine komplizierte Erwarungswertformel und möchte sie in Maxima für verschiedenen Werte der Parameter simulieren. Wie erstellt man in Maxima Simulationen? Im Bildanhang ist die betreffende Formel aufgeführt. Simuliert werden soll sie für festgelegte Werte von [mm] k_j [/mm] und m.
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
> Simulation eines Erwartungswertes nach Markov-Prozess
> (inhomogen, transient)
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Ich habe eine komplizierte Erwarungswertformel und möchte
> sie in Maxima für verschiedenen Werte der Parameter
> simulieren. Wie erstellt man in Maxima Simulationen? Im
> Bildanhang ist die betreffende Formel aufgeführt.
> Simuliert werden soll sie für festgelegte Werte von [mm]k_j[/mm]
> und m.
>
> [Dateianhang nicht öffentlich]
Hallo Max85
Ich verstehe nicht, was hier mit "Simulation" gemeint sein
soll. Man kann die Formel für gegebene Werte doch einfach
auswerten. Außer für m und [mm] k_j [/mm] sollte jeweils auch ein Wert
für p angegeben werden.
Wenn klar ist, für welchen Prozess die Formel einen Erwartungs-
wert für eine Größe [mm] x_A [/mm] liefert, könnte man aber allenfalls,
anstatt die Formel auszuwerten, eine Montecarlo-Simulation
erstellen, in welcher der Prozess z.B. 10000 mal mit einem
Zufallsparameter durchgespielt wird und dann das arithmetische
Mittel der [mm] x_A [/mm] - Werte als Ersatz für den Erwartungswert genommen
wird.
Wenn aber die Formel für den Erwartungswert schon vorliegt, ist
eine solche Simulation aber überflüssig - außer man möchte mit
den Simulationsergebnissen vielleicht die Richtigkeit der Formel
testen.
LG , Al-Chwarizmi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:20 Fr 15.09.2017 | Autor: | Max85 |
Hallo Al-Chwarizmi,
erstmal Danke für deine Antwort. Du hast recht. Simulation ist hier wohl nicht ganz zutreffend. Ich formuliere es mal anders. Also: Ich möchte den Ausdruck in der Formel interpretieren. Auf Grund seiner Form kann ich aber keine großartigen Aussagen treffen, weil der Ausdruck eben so sperrig ist. Ich dachte, ich rechne ihn mal für ein paar Werte für k und m aus (die exogene Anfangswahrscheinlichkeit p kann dabei variabel bleiben), um zu [mm] \textbf{sehen}, [/mm] was sich da tut... Ich habe in der Zwischenzeit herausgefunden, wie man das in Maxima einstellen kann. Jetzt sind die Ergebnisse ab k=1000 zu lang für Maxima. Frage also: Was kann ich hier machen? Und: weißt du vielleicht einen besseren Weg, was man mit der Formel machen könnte, um sie bspw. in eine Form zu bringen, die man besser interpretieren kann?
|
|
|
|
|
> Hallo Al-Chwarizmi,
>
> erstmal Danke für deine Antwort. Du hast recht. Simulation
> ist hier wohl nicht ganz zutreffend. Ich formuliere es mal
> anders. Also: Ich möchte den Ausdruck in der Formel
> interpretieren. Auf Grund seiner Form kann ich aber keine
> großartigen Aussagen treffen, weil der Ausdruck eben so
> sperrig ist. Ich dachte, ich rechne ihn mal für ein paar
> Werte für k und m aus (die exogene
> Anfangswahrscheinlichkeit p kann dabei variabel bleiben),
> um zu [mm]\textbf{sehen},[/mm] was sich da tut... Ich habe in der
> Zwischenzeit herausgefunden, wie man das in Maxima
> einstellen kann. Jetzt sind die Ergebnisse ab k=1000 zu
> lang für Maxima. Frage also: Was kann ich hier machen?
> Und: weißt du vielleicht einen besseren Weg, was man mit
> der Formel machen könnte, um sie bspw. in eine Form zu
> bringen, die man besser interpretieren kann?
Guten Abend !
Ein Hauptproblem sind vermutlich die vorkommenden Binomial-
koeffizienten. Bei diesen ist offenbar jeweils der obere Wert
in der Regel nicht ganzzahlig. Somit muss der einzelne
Binomialkoeffizient jeweils in einer Schleifenrechnung berechnet
werden.
Wie Maxima das macht, weiß ich leider nicht. Selber habe ich
übrigens noch gar nie mit Maxima gearbeitet, so dass ich hier
nicht helfen kann.
So hoffe ich, dass da jemand hereinguckt, der dann vielleicht
doch weiterhelfen kann.
So nebenbei würde mich aber trotzdem noch interessieren,
um welchen Markov-Prozess es denn bei dem Ganzen überhaupt
gehen soll. Kannst du uns das verraten ? Wäre nett.
Nackte Formeln sind wirklich trockenes Brot. Wenn man sich
dabei etwas Konkretes vorstellen kann, wird alles sofort viel
farbiger und interessanter - und wahrscheinlich kommen einem
auch erst dann die wirklich guten Ideen !
LG , Al-Chw.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 21:19 Sa 16.09.2017 | Autor: | Max85 |
Vielen Dank für deine erneute Antwort. Es ist wie du sagst, die Binomialkoeffizienten erlauben keine eingängige Interpretation. Die Ausdrücke darin können allerdings schon ganzzahlig sein, tatsächlich sind [mm] k_j [/mm] und m so, dass [mm] k_j/m [/mm] am Ende ganzzahlig ist. Es geht hierbei um einen Diffusionsprozess. Beispielsweise eine Krankheit, die sich in einer Population [mm] k_j [/mm] ausbreitet, wobei jeweils [mm] k_j/m [/mm] Individuen auf einmal infiziert werden. Daher steigt die Wahrscheinlichkeit für nicht-infizierte sich anzustecken je mehr Leute bereits infiziert sind. Der Erwartungswert in der Formel gibt dann unmittelbar an, wie viele Leute am Ende infiziert sein werden.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Fr 22.09.2017 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|