matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSind die Abbildungen linear?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Sind die Abbildungen linear?
Sind die Abbildungen linear? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sind die Abbildungen linear?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Di 04.12.2007
Autor: philipp-100

Hallo,
ich soll nachweisen, ob diese Abbildung linear ist.

[mm] f:R^2 \to [/mm] R, f(x,y)=x+y+3

Beschreibt diese Gleichung eine Ebene?
Wenn ich nachweisen will, dass es linear ist, wie stelle ich das an?
Ich kenne die Gleichung, f(z*u)=z*f(u)
weiss aber leider nicht, wie ich sie darauf anwenden kann,


Vielen Dank
Philipp

        
Bezug
Sind die Abbildungen linear?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Di 04.12.2007
Autor: Event_Horizon

Hallo!

Diese Gleichung kannst du in der Tat als Ebene im 3D-Raum verstehen. Der Funktionswert ist dann z.


Zu der Linearität:

Du kannst den "Eingabeparameter" als Vektor sehen:

[mm] f\vektor{x\\y}=... [/mm]

Jetzt setzt du [mm] a\vektor{x\\y}=\vektor{ax\\ay} [/mm] in die Formel ein, und schaust, ob du das a komplett aus geklammert bekommst. (Das geht!)


Aber du mußt ja nochwas zeigen: [mm] f\vektor{x_1\\y_1}+f\vektor{x_2\\y_2}=f\vektor{x_1+x_2\\y_1+y_2} [/mm]

Hier ist es meistens hilfreich, beide Seiten der Gleichung auszurechnen, und dann zu vergleichen. Das direkte Umformen einer Seite in die andere Seite wird schnell mal unübersichtlich.

Bezug
                
Bezug
Sind die Abbildungen linear?: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 16:32 Di 04.12.2007
Autor: angela.h.b.


> Zu der Linearität:
>  
> Du kannst den "Eingabeparameter" als Vektor sehen:
>  
> [mm]f\vektor{x\\y}=...[/mm]
>  
> Jetzt setzt du [mm]a\vektor{x\\y}=\vektor{ax\\ay}[/mm] in die Formel
> ein, und schaust, ob du das a komplett aus geklammert
> bekommst. (Das geht!)

Hallo,

nein, das geht nicht!!!

Es ist [mm] f(a\vektor{x\\y})\not=af(\vektor{x\\y}). [/mm]

Gruß v. Angela

Bezug
        
Bezug
Sind die Abbildungen linear?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Di 04.12.2007
Autor: angela.h.b.


> Hallo,
> ich soll nachweisen, ob diese Abbildung linear ist.
>  
> [mm]f:R^2 \to[/mm] R, f(x,y)=x+y+3
>  
> Beschreibt diese Gleichung eine Ebene?
>  Wenn ich nachweisen will, dass es linear ist, wie stelle
> ich das an?
>  Ich kenne die Gleichung, f(z*u)=z*f(u)
>  weiss aber leider nicht, wie ich sie darauf anwenden
> kann,

Hallo,

das hat Dir EventHorizon ja schon gesagt, ebenso mußt Du für Linearität nach zeigen, daß für alle [mm] u:=\vektor{u_1 \\ u_2},v:=\vektor{v_1 \\ v_2} \in \IR^2 [/mm]  gilt f(u+v)=f(u)+f(v).

Eine Sache gibt es, die für Lineare Abbildungen immer erfüllt sein muß, und welche man sehr schnell sieht:

Durch eine lineare Abbildung wird immer die Null auf die Nullabgebildet, und daß das hier nicht der Fall ist, sieht man sofort.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]