matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenSinus, Cosinus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Sinus, Cosinus
Sinus, Cosinus < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus, Cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 So 22.09.2013
Autor: Richler

Aufgabe
Sinus und Cosinus von [mm] \pmat{ 2\pi & 1 & 0 \\ 0 & 2\pi & 1 \\ 0 & 0 & 2\pi } [/mm]  berechnen.

Hallo , =)

ich brauche eure Hilfe. Ich bereite mich gerade auf die Lina Prüfung vor und habe absolut keine Ahnung wie man den Sinus und den Cosinus von einer Matrix berechnet. Ich habe oben einfach mal eine Beispielmatrix genommen. Kann mir anhand dieser Matrix einer erklären, wie man den Sinus und den Cosinus davon berechnet?

Liebe Grüße

Richler

        
Bezug
Sinus, Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 So 22.09.2013
Autor: abakus


> Sinus und Cosinus von [mm]\pmat{ 2\pi & 1 & 0 \\ 0 & 2\pi & 1 \\ 0 & 0 & 2\pi }[/mm]
> berechnen.
> Hallo , =)

>

> ich brauche eure Hilfe. Ich bereite mich gerade auf die
> Lina Prüfung vor und habe absolut keine Ahnung wie man den
> Sinus und den Cosinus von einer Matrix berechnet. Ich habe
> oben einfach mal eine Beispielmatrix genommen. Kann mir
> anhand dieser Matrix einer erklären, wie man den Sinus und
> den Cosinus davon berechnet?

>

> Liebe Grüße

>

> Richler

Hallo,
du kennst die Reihenentwicklung der Sinusfunktion?
Wenn A eine Matrix ist, dann gilt
[mm]sin(A)=A-\frac{A^3}{3!}+\frac{A^5}{5!} -\frac{A^7}{7!}\pm...[/mm]

Gruß Abakus

Bezug
                
Bezug
Sinus, Cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 So 22.09.2013
Autor: Richler

Hallo abakus ,

erstmal danke für deine Antwort. =) Ja ich kenne die Reihenentwicklung, aber diese ist doch unendlich und wenn [mm] A^k [/mm] irgendwann 0 wird, dann macht es ja sinn, aber sonst doch nicht. Gibt es keine andere Möglichkeit das noch zu berechnen. Ich hatte das schonmal einen Tutor gefragt und dieser hatte mir irgendwas mit Ableitungen erklärt, aber ich kann mich daran nicht mehr erinnern, deswegen hier nochmal die Frage.

lg

Bezug
                        
Bezug
Sinus, Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 So 22.09.2013
Autor: abakus


> Hallo abakus ,

>

> erstmal danke für deine Antwort. =) Ja ich kenne die
> Reihenentwicklung, aber diese ist doch unendlich und wenn
> [mm]A^k[/mm] irgendwann 0 wird, dann macht es ja sinn, aber sonst
> doch nicht.

Du vergisst die Fakultäten. Das konvergiert immer.
Gruß Abakus

> Gibt es keine andere Möglichkeit das noch zu
> berechnen. Ich hatte das schonmal einen Tutor gefragt und
> dieser hatte mir irgendwas mit Ableitungen erklärt, aber
> ich kann mich daran nicht mehr erinnern, deswegen hier
> nochmal die Frage.

>

> lg

Bezug
                
Bezug
Sinus, Cosinus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:11 So 22.09.2013
Autor: Richler

Also ich versuche das jetzt mal für den Coinus.

[mm] cos(A)=A-\frac{A^2}{2!}+\frac{A^4}{4!} -\frac{A^6}{6!}\pm... [/mm]

=  [mm] \pmat{ 2\pi & 1 & 0 \\ 0 & 2\pi & 1 \\ 0 & 0 & 2\pi } [/mm] - [mm] \frac{ \pmat{ 2\pi & 1 & 0 \\ 0 & 2\pi & 1 \\ 0 & 0 & 2\pi }^{2}}{2!}+\frac{ \pmat{ 2\pi & 1 & 0 \\ 0 & 2\pi & 1 \\ 0 & 0 & 2\pi }^{4}}{4!} -\frac{ \pmat{ 2\pi & 1 & 0 \\ 0 & 2\pi & 1 \\ 0 & 0 & 2\pi }^{6}}{6!}\pm... [/mm]

= [mm] \pmat{ 2\pi & 1 & 0 \\ 0 & 2\pi & 1 \\ 0 & 0 & 2\pi } [/mm] - ( [mm] \pmat{ 4\pi^{2} & 4\pi & 1 \\ 0 & 4\pi^{2} & 4\pi \\ 0 & 0 & 4\pi^{2} } [/mm] ) / 2 +   ( [mm] \pmat{ 16\pi^{2} & 32\pi^{3} & 24\pi^{2} \\ 0 & 16\pi^{2} & 32\pi^{3} \\ 0 & 0 & 16\pi^{2} } [/mm] ) / 24 -  ( [mm] \pmat{ 64\pi^{6} & 192\pi^{5} & 240\pi^{4} \\ 0 & 64\pi^{6} & 192\pi^{5} \\ 0 & 0 & 64\pi^{6} } [/mm] ) / 720 [mm] \pm... [/mm]

Also ich reche hier schon Ewigkeiten rum und da kommt was ganz langes kompliziertes raus und das ist eine Klausuraufgabe und kann auf keinen Fall so lange gehen. Es muss auf jeden Fall eine andere Möglichkeit geben???

Bezug
                        
Bezug
Sinus, Cosinus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Mo 23.09.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]