matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionSinusintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Sinusintegral
Sinusintegral < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinusintegral: Aufgabe: Beweis einer Aussage
Status: (Frage) beantwortet Status 
Datum: 23:57 So 25.01.2009
Autor: andreji

Aufgabe
Sei [mm] n\in\IN [/mm] und [mm] f_n:\IR\to\IR [/mm] definiert durch  [mm] f_n(x)=sin(nx)/nx [/mm] für [mm] x\not=0 [/mm] und [mm] f_n(x)=0 [/mm] für x=0

Zeigen Sie:

[mm] |\integral_{0}^{1/n}{f_n(x) dx}|\le\bruch{1}{n} [/mm]

Guten Abend,

ich habe folgendes Problem mit dieser Aufgabe und zwar bin ich mir nicht so sicher, wie ich diese Aussage für [mm] x\not=0 [/mm] beweisen kann. Meine Idee ist ein Beweis mittels vollständiger Induktion mithilfe der Taylorreihenentwicklung (http://de.wikipedia.org/wiki/Integralsinus).

Es gilt:

[mm] \integral_{0}^{1/n}{\bruch{sin(nx)}{nx}dx}=Si(1/n); [/mm]

Si(1/n) [mm] \le [/mm] 1/n  und  Si(1/n) [mm] \ge [/mm] -1/n;


Beweise zuerst die Aussage: Si(1/n) [mm] \le [/mm] 1/n

Induktionsanfang: n=1;

Benutze hier die Taylorreihenentwicklung: [mm] Si(x)=x-(\bruch{x^3}{3!*3})+(\bruch{x^5}{5!*5})-(\bruch{x^7}{7!*7})+... [/mm]

Si(1)=1-1/18+1/600-1/5040+... [mm] \le [/mm] 1

Induktionsschritt: n->n+1;

[mm] Si(\bruch{1}{n+1})=\bruch{1}{n+1}-\bruch{(\bruch{1}{n+1})^3}{18}+\bruch{(\bruch{1}{n+1})^5}{600}-\bruch{1(\bruch{1}{n+1})^7}{5040}+...\le \bruch{1}{n+1} [/mm]

Man kann hier schon zwar erkennen, dass die Aussage stimmt, wegen dem zweiten Term [mm] \bruch{(\bruch{1}{n+1})^3}{18}, [/mm] aber wie kann das genauer gezeigt werden?

Oder ist das alles überflüssig und man kann direkt mit der Aussage [mm] Si(\bruch{1}{n})=\bruch{1}{n}-\bruch{(\bruch{1}{n})^3}{18}+\bruch{(\bruch{1}{n})^5}{600}-\bruch{(\bruch{1}{n})^7}{5040}+...\le \bruch{1}{n} [/mm] weiterarbeiten?

Vielen Dank voraus für die Hilfe!





Mfg
Andrej I.


PS.:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sinusintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 07:13 Mo 26.01.2009
Autor: Leopold_Gast

Das geht viel einfacher.

Für [mm]t \geq 0[/mm] gilt nämlich: [mm]|\sin t| \leq t[/mm] (der Sinusgraph liegt hier unterhalb seiner Tangente im Ursprung), woraus sich

[mm]\left| \frac{\sin t}{t} \right| \leq 1[/mm]

ergibt (die linke Seite kann bei [mm]t=0[/mm] mit dem Wert 1 stetig ergänzt werden, wie die Sinusreihe zeigt). Und jetzt setze speziell [mm]t = nx[/mm] und schätze das Integral ab.

Bezug
                
Bezug
Sinusintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Mo 26.01.2009
Autor: andreji

Aufgabe
[mm] |\integral_{1/n}^{\pi}{f_n(x) dx}|\le\bruch{1}{n}log(\pi*n) [/mm]

Vielen Dank für deine Hilfe, Leopold-Gast! Du hast Recht, auf die Weise lässt sich die Aufgabe vergleichsweise sehr leicht lösen.

Nun habe ich folgende Aufgabe, aber ich sehe nicht wie ich das Prinzip hier anwenden kann...

Bezug
                        
Bezug
Sinusintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 06:49 Di 27.01.2009
Autor: Leopold_Gast

Die Dreiecksungleichung für Integrale und die triviale Abschätzung [mm]|\sin t| \leq 1[/mm] genügen vollständig. Zu guter Letzt sollte man auch noch an die Logarithmengesetze denken.

Bezug
                                
Bezug
Sinusintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 Di 27.01.2009
Autor: andreji

Ich danke dir vielmals, das hat jetzt auch geklappt!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]