matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesSinusschwingung als Kosinussch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Sinusschwingung als Kosinussch
Sinusschwingung als Kosinussch < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinusschwingung als Kosinussch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Mi 11.12.2013
Autor: TorbM

Aufgabe
Stellen Sie die Schwingungen als Kosinusschwingung dar vom Typ:
y(t) = A * cos [mm] (\omega [/mm] t + [mm] \varphi) [/mm]    , A > 0, [mm] \omega [/mm] > 0,    [mm] -\pi [/mm] < [mm] \varphi \le \pi [/mm]

1. y(t) = 3 * sin (t + [mm] 2\pi) [/mm]
2. y(t) = -sin (2t - [mm] \bruch{\pi}{2}) [/mm]
3. y(t) = -2sin (-5t + 3)

Finde praktisch nichts zu diesen Aufgaben, suche eigentlich nur Rechenregeln. Hab über google eine einzige Seite gefunden mit 3 Aufgaben und Lösungen, hab mir dann eben bischen was hergeleitet.

1. y(t) = 3 * sin (t + [mm] 2\pi) [/mm]  | [mm] -\pi [/mm]  
y(t) = -3 sin (t [mm] +\pi) [/mm]       | [mm] -\bruch{\pi}{2} [/mm]
y(t) = -3 cos (t + [mm] \bruch{\pi}{2}) [/mm]

2. y(t) = -sin (2t - [mm] \bruch{\pi}{2}) |+\pi [/mm]
y(t) = sin (2t + [mm] \bruch{\pi}{2}) [/mm]   | [mm] -\bruch{\pi}{2} [/mm]
y(t) = cos (2t)

3. y(t) = -2sin (-5t + 3) [mm] |-\pi [/mm]
y(t) = 2 sin (-5t + (3 - [mm] \pi)) [/mm]  | [mm] +\bruch{\pi}{2} [/mm]
y(t) = 2 cos (-5t +(3 - [mm] \bruch{\pi}{2})) [/mm]
y(t) = 2 cos (5t -(3 - [mm] \bruch{\pi}{2})) [/mm]
y(t) = 2 cos (5t - 3 + [mm] \bruch{\pi}{2})) [/mm]

Stimmt das so ? Wenn nicht, über Rechenregeln dazu wäre ich glücklich.

1. Vorzeichen ändern [mm] -\pi [/mm] oder [mm] +\pi [/mm]
2. sin auf cos [mm] -\bruch{\pi}{2} [/mm]

Mehr weiß ich nicht, muss man die 5t, 2t noch irgendwie verkleinern ?
Muss man das Minus am Ende z.b. bei y(t) = -3 cos (t + [mm] \bruch{\pi}{2}) [/mm] noch irgendwie weg machen ? (wobei man dann ja außerhalb der gegebenen Grenzen wäre wenn man noch minus oder plus [mm] \pi [/mm] macht.


        
Bezug
Sinusschwingung als Kosinussch: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Mi 11.12.2013
Autor: reverend

Hallo TorbM,

> Stellen Sie die Schwingungen als Kosinusschwingung dar vom
> Typ:
>  y(t) = A * cos [mm](\omega[/mm] t + [mm]\varphi)[/mm]    , A > 0, [mm]\omega[/mm] >

> 0,    [mm]-\pi[/mm] < [mm]\varphi \le \pi[/mm]
>  
> 1. y(t) = 3 * sin (t + [mm]2\pi)[/mm]
>  2. y(t) = -sin (2t - [mm]\bruch{\pi}{2})[/mm]
>  3. y(t) = -2sin (-5t + 3)
>  Finde praktisch nichts zu diesen Aufgaben, suche
> eigentlich nur Rechenregeln. Hab über google eine einzige
> Seite gefunden mit 3 Aufgaben und Lösungen, hab mir dann
> eben bischen was hergeleitet.
>  
> 1. y(t) = 3 * sin (t + [mm]2\pi)[/mm]  | [mm]-\pi[/mm]  
> y(t) = -3 sin (t [mm]+\pi)[/mm]       | [mm]-\bruch{\pi}{2}[/mm]
>  y(t) = -3 cos (t + [mm]\bruch{\pi}{2})[/mm]

Stimmt zwar, erfüllt aber nicht die Aufgabe. Beachte A>0.

> 2. y(t) = -sin (2t - [mm]\bruch{\pi}{2}) |+\pi[/mm]
>  y(t) = sin (2t
> + [mm]\bruch{\pi}{2})[/mm]   | [mm]-\bruch{\pi}{2}[/mm]
>  y(t) = cos (2t)

Korrekt. [ok]

> 3. y(t) = -2sin (-5t + 3) [mm]|-\pi[/mm]
>  y(t) = 2 sin (-5t + (3 - [mm]\pi))[/mm]  | [mm]+\bruch{\pi}{2}[/mm]
>  y(t) = 2 cos (-5t +(3 - [mm]\bruch{\pi}{2}))[/mm]

Dieser Schritt stimmt nicht.

>  y(t) = 2 cos (5t -(3 - [mm]\bruch{\pi}{2}))[/mm]
>  y(t) = 2 cos (5t - 3 + [mm]\bruch{\pi}{2}))[/mm]
>  
> Stimmt das so ? Wenn nicht, über Rechenregeln dazu wäre
> ich glücklich.
>
> 1. Vorzeichen ändern [mm]-\pi[/mm] oder [mm]+\pi[/mm]
>  2. sin auf cos [mm]-\bruch{\pi}{2}[/mm]

Schau Dir mal die Graphen von Sinus und Cosinus an, über mehrere Perioden. Daraus kannst Du Dir eigentlich alle Rechenregeln selbst herleiten, z.B. diese:

[mm] \sin{(x)}=-\sin{(-x)} [/mm]
[mm] \sin{(x)}=\sin{\left(\bruch{\pi}{2}-x\right)} [/mm]
[mm] \sin{(x)}=\cos{\left(x-\bruch{\pi}{2}\right)} [/mm]
[mm] \cos{(x)}=\cos{(-x)} [/mm]
[mm] \sin{(x)}=\sin{(x+2\pi)} [/mm]
...

> Mehr weiß ich nicht, muss man die 5t, 2t noch irgendwie
> verkleinern ?

Nein.

>  Muss man das Minus am Ende z.b. bei y(t) = -3 cos (t +
> [mm]\bruch{\pi}{2})[/mm] noch irgendwie weg machen ? (wobei man dann
> ja außerhalb der gegebenen Grenzen wäre wenn man noch
> minus oder plus [mm]\pi[/mm] macht.

Wie gesagt: A>0 ist gefordert.

Grüße
reverend  


Bezug
                
Bezug
Sinusschwingung als Kosinussch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mi 11.12.2013
Autor: TorbM

Aufgabe
y(t) = 2 sin (-5t + 3)

Was mache ich denn wenn da kein [mm] \pi [/mm] steht sondern nur 3 ?

Bezug
                        
Bezug
Sinusschwingung als Kosinussch: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Mi 11.12.2013
Autor: chrisno

Du schaffst Dir ein [mm] $\pi$ [/mm] mit $3 = 3 [mm] \cdot \bruch{\pi}{\pi} [/mm] = [mm] \bruch{3}{\pi} \cdot \pi$. [/mm]

Bezug
                        
Bezug
Sinusschwingung als Kosinussch: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Mi 11.12.2013
Autor: Calli


> y(t) = 2 sin (-5t + 3)
>  Was mache ich denn wenn da kein [mm]\pi[/mm] steht sondern nur 3 ?

Hä?
Was da für ein Nullphasenwinkel steht, ist doch völlig irrelevant!

Es gilt allgemein:

[mm] $\sin(x)=\cos(x-\pi/2)=\cos(\pi/2-x)$ [/mm]

[mm] $(x=-5\,t [/mm] +3)$


Bezug
                                
Bezug
Sinusschwingung als Kosinussch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 17.12.2013
Autor: TorbM

Ich muss doch [mm] -\pi [/mm] und -pi halbe rechnen um die Vorzeichen usw. zu ändern...


y(t) = -2 sin (-5t + 3)

vorne muss das Minus weg, also [mm] -\pi [/mm] dann steht da

y(t) = 2 sin (-5t + (3 - [mm] \pi)) [/mm]

dann sinus zu cosinus also [mm] +\bruch{\pi}{2} [/mm]

y(t) = 2 cos (-5t + (3 - [mm] \pi [/mm] + [mm] \bruch{\pi}{2})) [/mm]  

y(t) = 2 cos (-5t + (3 - [mm] \bruch{\pi}{2})) [/mm]  

3 - [mm] \bruch{\pi}{2} [/mm] ist irgendne Kommazahl 1,4292.....die muss man da bestimmt nicht hin schreiben.

Jetzt muss ich noch das -5t in +5t umwandeln und wäre fertig.
Stimmt das so ? Was genau mache ich falsch ? Wie kriege ich die -5t zur +5t falls man das so machen muss.

Bezug
                                        
Bezug
Sinusschwingung als Kosinussch: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 17.12.2013
Autor: chrisno

Wandle zuerst das -5t in +5t um. Schau Dir dazu die Symmtrieeigenschaften der Sinusfunktion an.
Wie Du mit der 3 umgehen kannst, so dass es mit dem [mm] $\pi$ [/mm] schöner aussieht, habe ich Dir oben geschrieben. Da geht es aber wirklich nur um die persönliche Präferenz, welche Darstellung besser gefällt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]