Skalarprodukt < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:47 Do 10.05.2007 | Autor: | itse |
Aufgabe | 2.Es sein
[mm] $\vec [/mm] a$ = [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\vec [/mm] b$ = [mm] $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$, $\vec [/mm] c$ = [mm] $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$
[/mm]
a) Bestimmen Sie die Beträge der Vektoren [mm] $\vec [/mm] a$, [mm] $\vec [/mm] b$ und [mm] $\vec [/mm] c$.
b) Bestimmen Sie die Skalarprodukte [mm] $\vec [/mm] a$ * [mm] $\vec [/mm] b$, [mm] $\vec [/mm] a$ * [mm] $\vec [/mm] c$ und [mm] $\vec [/mm] b$ * [mm] $\vec [/mm] c$.
c) Bestimmen Sie die Winkel zwischen den Vektoren [mm] $\vec [/mm] a$, [mm] $\vec [/mm] b$ und [mm] $\vec [/mm] c$.
3. Geben Sie drei zum Vektor [mm] $\vec [/mm] v$ = [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ [/mm] senkrechte Vektoren an. |
Hallo zusammen,
hier meine Lösung, wenn es sich jemand anschauen könnte und sagen ob es so passt? Vielen Dank
2. a) [mm] $\vec [/mm] |a|$ = [mm] $\wurzel{2^2+0^2+1^2} [/mm] = [mm] \wurzel{5}$
[/mm]
[mm] $\vec [/mm] |b|$ = [mm] $\wurzel{4^2+(-3)^2+1^2} [/mm] = [mm] \wurzel{26}$
[/mm]
[mm] $\vec [/mm] |c|$ = [mm] $\wurzel{(-1)^2+1^2+(-2)^2} [/mm] = [mm] \wurzel{6}$
[/mm]
b) [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ [/mm] * [mm] $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$ [/mm] = 2*4+0*(-3)+1*1 = 9
[mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ [/mm] * [mm] $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ [/mm] = 2*(-1)+0*1+1*(-2) = -4
[mm] $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$ [/mm] * [mm] $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ [/mm] = 4*(-1)+(-3)*1+1*(-2) = -9
c) [mm] $\cos \gamma$ [/mm] = [mm] $\bruch{\vec a * \vec b}{\vec |a| * \vec |b|}$ [/mm] = 37,9°
[mm] $\cos \gamma$ [/mm] = [mm] $\bruch{\vec a * \vec c}{\vec |a| * \vec |c|}$ [/mm] = 136,9°
[mm] $\cos \gamma$ [/mm] = [mm] $\bruch{\vec b * \vec c}{\vec |b| * \vec |c|}$ [/mm] = 136,1°
3. Dazu muss das Skalarprodukt von [mm] $\vec [/mm] v$ = [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ [/mm] * [mm] $\vec [/mm] x$ = [mm] $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ [/mm] = 0 sein, da [mm] $\cos-|$ [/mm] von 0 = 90° ist.
1 * 1 + 2 * 1 -2 * 1,5 = 0
1 * 2 + 2 * 2 -2 * 3 = 0
1*(-2) + 2 * (-2) -2 * (-3) = 0
Die Vektoren [mm] $\vec x_1$ [/mm] = [mm] $\begin{pmatrix} 1 \\ 1 \\ 1,5 \end{pmatrix}$, $\vec x_2$ [/mm] = [mm] $\begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$ [/mm] und [mm] $\vec x_3$ [/mm] = [mm] $\begin{pmatrix} -2 \\ -2 \\ -3 \end{pmatrix}$ [/mm] sind senkrecht zum Vektor [mm] $\vec [/mm] v$ = [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$.
[/mm]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:07 Do 10.05.2007 | Autor: | itse |
hallo,
hab beim kopieren der vektoren einen fehler gemacht. bei aufgabe 3 lautet der vektor [mm] $\vec [/mm] v$ = $ [mm] \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} [/mm] $,
dann müsste meine Lösung doch stimmen?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:10 Do 10.05.2007 | Autor: | Loddar |
Hallo itse!
Dann stimmt's ...
Gruß
Loddar
|
|
|
|
|
Hallo,
habe gerade deine winkel in c) eingetippt, alle korrekt
steffi
|
|
|
|