matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenSkalarprodukt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Skalarprodukt
Skalarprodukt < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Hilfe/Idee
Status: (Frage) beantwortet Status 
Datum: 10:29 So 20.03.2011
Autor: manolya

Aufgabe
Wie berechne ich es nochmal?


Hallo an alle,

ich habe irgendwie mein Faden verloren und komme bei so einer simplen Aufgabe gerad nicht weiter:

Es ist eine quadratische Pyramide abgebildet.

Nun soll ich das Skalarprodukt von [mm] \overrightarrow{SB}* \overrightarrow{SC} [/mm] berechnen. Ich weiß jetzt wie man Skalarprodukte errechnet, doch habe ich die Koordinatnpunte von S und B. Ich muss ja erstden Vektor errechnen, der die beiden Punkte S und B verbindet.

Wie mach ich das nochmal? (Dumme Frage, ich weiß)


LIEBE GRÜßE


        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 So 20.03.2011
Autor: Tyskie84

Hallo,

sofern du die Koordinaten von S und von B hast dann rechnest du um den Vektor, sagen wir [mm] \vec{v} [/mm] zu bekommen: [mm] \vec{v}=\vektor{b_{1} \\ b_{2} \\ b_{3}}-\vektor{s_{1} \\ s_{2} \\ s_{3}} [/mm] zu bekommen. Siehe hier: []Klick

Bezug
        
Bezug
Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 So 20.03.2011
Autor: manolya

Aufgabe
Kosinusform oder Koordinatenform?

Ich habe jetzt den Vektor für [mm] \overrightarrow{SB} [/mm] und [mm] \overrightarrow{SC} [/mm] berechnet.
Um das Skalarprodukt von:
[mm] \overrightarrow{SB}*\overrightarrow{SC} [/mm] zu errechnen, muss ich doch einfach die Vektoren miteinander multiplizieren (siehe Koordinatenform), unter Nichteinbeziehung eines Winkel von Kosinus, weil ich keine Winkelangabe habe, oder?


LIEBE GRÜßE

Bezug
                
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 So 20.03.2011
Autor: Tyskie84

Hallo,

> Kosinusform oder Koordinatenform?
>  Ich habe jetzt den Vektor für [mm]\overrightarrow{SB}[/mm] und
> [mm]\overrightarrow{SC}[/mm] berechnet.
> Um das Skalarprodukt von:
>  [mm]\overrightarrow{SB}*\overrightarrow{SC}[/mm] zu errechnen, muss
> ich doch einfach die Vektoren miteinander multiplizieren
> (siehe Koordinatenform), unter Nichteinbeziehung eines
> Winkel von Kosinus, weil ich keine Winkelangabe habe, oder?
>
>

ja

> LIEBE GRÜßE


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]