matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungSkalarprodukt und Ebenen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Skalarprodukt und Ebenen
Skalarprodukt und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt und Ebenen: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 20:56 Di 25.01.2005
Autor: Logan

Hi Leute,

ich habe Probleme mit einigen Aufgaben.
Vielleicht könnt ihr mir ein wenig helfen.

Aufgabe 1:
Berechne den Abstand des Punktes P der Geraden g.

[mm] g: \vec{x}= \vektor{1\\-2} + \lambda * \vektor{-1\\3}; P(1|1)[/mm]

Wenn ich jetzt die gleiche Aufgabe im [mm]R^3[/mm] Raum lösen müsste, wüsste ich sofort was zu machen wäre.
Ich müsste den Lotfußpunkt der Geraden g herausfinden und dann lediglich den Abstand zu P berechnen.
Im [mm]R^2[/mm] fällt jedoch die Bedingung [mm] 0 = (Richtungsvektor von g) \* (Richtungsvektor von h)[/mm] weg.
Somit kann ich Lambda nicht berechnen.

Aufgabe 2:
Eine Ebene kann auch vorgegeben werden durch eine Gerade g und einen Punkt P, der nicht auf der Geradeb g liegt.
[mm] g: \vec {x}= \vec{a} + \lambda * \vec{u}; P mit \overrightarrow{0P} = \vec{p}[/mm]
Welche BEdingungen muss [mm]\vec{p}[/mm] erfüllen, damit tatsächlich eine Ebene vorliegt.

--> Ich habe als einzige Bedingung, dass [mm]\vec{p}[/mm] nicht auch der Geraden g liegen darf.

Aufgabe 3:

Eine Ebene kann auch vorgegeben werden durch zwei verschiedene zueinander parallele Geraden. Gib eine Parameterdarstellung der Ebene an, die durch die Gerade [mm]g_1[/mm] und [mm]g_2[/mm] bestimmt ist.
[mm]g_1: \vec{x}=\vec{a} + \lambda * \vec{u}; g_2: \vec{x}= \vec{b} + \mu * \vec{v}[/mm]
Welche Bedingungen müssen [mm]\vec{a}-\vec{b}[/mm],[mm]\vec{u}[/mm] und [mm]\vec{v}[/mm]erfüllen, damit [mm]g_1[/mm] und [mm]g_2[/mm] parallel zueinander sind und [mm]g_1\not= g_2[/mm] gilt.  

        
Bezug
Skalarprodukt und Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Di 25.01.2005
Autor: nitro1185

Hallo!!!

Zu 1.)

Ich glaube du verwechelst da was-Im R³ ist es eben schwieriger,da du keine eindeutigen Normalvektoren hast!!!

Dein Normalvektor lautet (3,1) =>

h:  [mm] \vektor{3 \\ 1}* \vektor{1 \\ 1}= \vektor{3 \\ 1}* \vektor{x \\ y} [/mm]

=> h: 5=3x+y    Das ist deine Gerade normal zu g durch P!!

=> g geschnitten mit h gibt den Fußpunkt => Abstand

PS:Es gibt die sogenannte Hessesche Abstandformel!!!!!!!!

Zu 2.)

Das kommt mir ein bisschen komisch vor.Für eine Ebene brauchst du 2 und genau 2 Richtungsvektoren => Eine Ebene und ein Punkt kann nicht genügen!!!

korrigiere mich,falls mir viell. etwas neu ist oider fremd!!! :-)

Zu3.)

Genau das ist schon besser. Du kannst einen Richtungsvektor einer Geraden als Richtungsvektor der Ebene nehmen aber BITTE nicht den anderen parallelen Vektor,.denn die Richtungsvektoren der Ebene dürfen keine vielfachen voneinander sein,d.h sie dürfen nicht parallel sein!!!

Nimm den Vektor dr die beiden gegebenen Punkte der Geraden verbindet!!!!

Alles klar: mfg daniel

Bezug
                
Bezug
Skalarprodukt und Ebenen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Di 25.01.2005
Autor: Logan

Danke schön.

Ah und noch zu Aufgabe 2:

> Zu 2.)
>  
> Das kommt mir ein bisschen komisch vor.Für eine Ebene
> brauchst du 2 und genau 2 Richtungsvektoren => Eine Ebene
> und ein Punkt kann nicht genügen!!!
>  
> korrigiere mich,falls mir viell. etwas neu ist oider
> fremd!!! :-)

Wenn du eine Gerade und einen Punkt hast, dann kannst du auch einen weiteren Richtungsvektor bestimmen. Mit 2 Richtungsvektoren und einem Punkt kannst du schließlich eine Parameterdarstellung der Ebene aufstellen.

Bye
Logan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]