matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteSkalarprodukte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukte
Skalarprodukte < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:02 Mi 11.05.2011
Autor: imzadi

Aufgabe
Sei V ein endlichdimensionaler R- bzw. C-Vektorraum.Seien s1 und s2 Skalarprodukte mit folgender Eigenschaft:Sind v,w aus V mit s1(v,w)=0,so folgt s2(v,w)=0.
Zeigen oder widerlegen Sie: Es existiert lambda > 0 mit s1=lambda*s2.

Hallo, liebes Forum,
als erstes verstehe ich die Aufgabestellung nicht ganz:was bedeutet s1=lambda*s2? ist das etwa gemeint <v,w>1 = lambda* <v,w>2?
Wie beweise ich ,dass etwas existiert;es fällt mir in Moment leider nicht ein...
Erste 20 Minuten  Beschäftigung mit der Aufgabe haben mir außer folgenden Tatsachen keine weitere Erkenntnisse gebracht: v oder w können null sein (s1,s2 können doch nicht ausgeartet sein ,oder?) oder v und w sind orthogonal.
Vielleicht kann mir jemand einen Denkanstoß geben ,sonst weiß ich in Moment überhaupt nicht,in welche Richtung es gehen soll, und es ist schon soo spät...Vielen Dank in voraus.

Imzadi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Mi 11.05.2011
Autor: SEcki

<v,w><v,w>>  Erste 20 Minuten  Beschäftigung mit der Aufgabe haben mir
> außer folgenden Tatsachen keine weitere Erkenntnisse
> gebracht: v oder w können null sein (s1,s2 können doch
> nicht ausgeartet sein ,oder?) oder v und w sind
> orthogonal.

Wie wäre es denn damit, dass die orthogonalen Komplemente dann immer gleich sind? Die ONB zu einem SKP ist orthogonal zum anderen.

Und weiter - sind a und b orthogonal, dann auch a-b und a+b.

SEcki
</v,w></v,w>

Bezug
        
Bezug
Skalarprodukte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Do 12.05.2011
Autor: imzadi

Danke schön,es ist schon mal ein Anhaltspunkt. Werde jetzt erstmal nachschauen was orthogonale Komplemente sind und dann kann es los gehen. Liebe Grüße, Imzadi

Bezug
                
Bezug
Skalarprodukte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:15 Do 12.05.2011
Autor: angela.h.b.

Hallo,

[willkommenmr].

Stell bitte nicht Fragen auf "unbeantwortet" (roter Kasten), wenn Du eine Antwort erhalten hast - auch wenn Deine Frage mit der gegebenen Antwort noch nicht abschließend geklärt ist.
Wenn Du Rückfragen hast, kannst Du an die gegebene Antwort gerne Rückfragen (roter Kasten) anhängen.

Guck' mal!

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]