Sobolewräume: Einbettung, Norm < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 15:20 So 07.05.2017 | Autor: | Becky27 |
Aufgabe 1 | Die Einbettung von [mm] W^{1,1}(a,b) [/mm] in C[a,b] ist nicht kompakt. |
Aufgabe 2 | [mm] ||v||_{-1,2} [/mm] = [mm] \sup_{v \in H^{1}_{0}, v\not=0}\bruch{||_{H^{-1}xH^{1}_{0}}}{|v|_{1,2}} [/mm] |
1) Definiert als kompakte Einbettung haben wir, dass jede beschränkte Folge in [mm] W^{1,1}(a,b) [/mm] eine konvergente Teilfolge in C[a,b] besitzen müsste.
Mein Problem ist dass ich nicht verstehe inwiefern beschränkt/konvergent die Folge sein muss, also auf eine bestimmte Norm bezogen? Und mein Ansatz wäre, dass die kritischen Punkte auf dem Rand liegen, also dass die als Gegenbeispiel passende Folge sich bei a und b so verhält, dass keine Teilfolge gegen eine stetige Funktion auf [a,b] konvergiert. Allerdings hatte ich es bisher so verstanden, dass die Funktionen in [mm] W^{1,1}(a,b) [/mm] eigentlich auch fast überall stetig sein müssen.
2)Ich verstehe nicht wie die Norm ausformuliert aussieht (also wenn man sie ohne Normstriche schreiben würde)
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Mi 10.05.2017 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:48 Fr 12.05.2017 | Autor: | Kalkutta |
Die Einbettung soll natürlich genau bezüglich der natürlichen Normen auf den betreffenden Räumen kompakt sein. Das heißt Supremumsnorm auf C[a,b] und Sobolevnorm auf [mm] W^{1,1}(a,b).
[/mm]
Ich würde als Gegenbeispiel (o.B.d.A a=0, b=1) die Funktionenfolge [mm] $(f_n)_n$ [/mm] definiert durch [mm] $f_n(x)=\begin{cases}nx,\quad&\text{falls }0\leq x\leq \frac 1n \\ 2-nx,\quad&\text{falls }\frac 1n\leq x\leq \frac 2n\\0,\quad&\text{sonst}\end{cases}$ [/mm] wählen. Die Folge konvergiert punktweise gegen $0$, also müsste ein möglicher Teilfolgengrenzwert die Nullfunktion sein. Jedes Folgenglied hat aber Supremumsnorm $1$, also kann das unmöglich der Fall sein.
Jetzt musst du nur noch zeigen, dass diese Folge tatsächlich in [mm] W^{1,1} [/mm] liegt, zum Beispiel indem du sie als Integral einer [mm] $L^1$-Funktion [/mm] darstellst und zeigen, dass ihre Sobolevnorm beschränkt ist.
Den Raum [mm] H^{-1} [/mm] kenne ich nicht, daher kann ich nichts zu deiner zweiten Frage schreiben.
|
|
|
|