matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieSonderfälle chi quadrat
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Sonderfälle chi quadrat
Sonderfälle chi quadrat < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sonderfälle chi quadrat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 Mi 06.11.2013
Autor: piriyaie

Aufgabe
Sonderfälle:

n=1: [mm] X_{1}^{2} [/mm] = [mm] Z^{2} [/mm] mit N(0, 1)-verteiltem Z
[mm] n=2:X_{2}^{2} [/mm] ist exponential verteilt mit Parameter [mm] \lambda [/mm] = [mm] \bruch{1}{2} [/mm]

Hallo,

bei den beiden Sonderfällen oben geht es um die Sonderfälle der Chi-Quadrat-Verteilung.

Ich möchte wissen ob ich diese Sonderfälle beweisen kann. Und wenn ja: Wie??

Weiß leider nicht wo ich anfangen sollte bei den Beweisen.

Wäre supi wenn mir jemand paar Tipps geben könnte.

Danke

Grüße
Ali

        
Bezug
Sonderfälle chi quadrat: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mi 06.11.2013
Autor: schachuzipus

Hallo Ali,

> Sonderfälle:

>

> n=1: [mm]X_{1}^{2}[/mm] = [mm]Z^{2}[/mm] mit N(0, 1)-verteiltem Z
> [mm]n=2:X_{2}^{2}[/mm] ist exponential verteilt mit Parameter
> [mm]\lambda[/mm] = [mm]\bruch{1}{2}[/mm]
> Hallo,

>

> bei den beiden Sonderfällen oben geht es um die
> Sonderfälle der Chi-Quadrat-Verteilung.

>

> Ich möchte wissen ob ich diese Sonderfälle beweisen kann.
> Und wenn ja: Wie??

>

> Weiß leider nicht wo ich anfangen sollte bei den
> Beweisen.

>

> Wäre supi wenn mir jemand paar Tipps geben könnte.

Für [mm]n=1[/mm] ist das doch direkte Konsequenz der Definition der [mm]\chi^2[/mm]-Verteilung.

Wie ist denn [mm]\chi_1^2[/mm] gem. Definition verteilt?

Für [mm]n=2[/mm] ist [mm]\chi_2\sim Z_1^2+Z_2^2[/mm], wobei [mm]Z_1,Z_2[/mm] unabängig standardnormalverteilt sind, also [mm]Z_1,Z_2\sim\mathcal N(0,1)[/mm]

Wenn du eine ZV [mm]X[/mm] hast, die [mm]\mathcal N(0,1)[/mm]-verteilt ist, wie ist dann [mm]X^2[/mm] verteilt? Und wie dann die Summe zweier solcher ZVen [mm]X^2+Y^2[/mm]?

Dichtetrafo oder VF ausrechnen .... oder Faltung

>

> Danke

>

> Grüße
> Ali

Gruß

schachuzipus

Bezug
                
Bezug
Sonderfälle chi quadrat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Do 07.11.2013
Autor: piriyaie

Danke schachuzipus,

zunächst zu n=1:

Für n=1 gilt:

Laut Def.:

[mm] X=Z_{1}^{2}=\summe_{i=1}^{1} Z_{i}^{2} [/mm]

[Frage: Was soll ich nun damit anfangen? Soll ich für Z etwas einsetzen?]

Also hat diese [mm] \chi^{2}-Verteilung [/mm] einen Freiheitsgrad, da n=1.

Nach Def. sieht die Verteilungsfunktion F für n=1 wie folgt aus:

[mm] F(x)=P(Z_{1}^{2} \le [/mm] x)

[Frage: Was fange ich hiermit an? Soll ich für Z und x etwas einsetzen?]

Tut mir leid aber ich checks einfach nicht :-(. Wäre supi wenn mir das jemand genauer erklären könnte.

Für n=1 gilt ja, dass [mm] X_{1}^{2}=Z^{2} [/mm] mit N(0, 1)-verteiltem Z.

ich verstehe nicht warum da steht [mm] X_{1}^{2}??? [/mm] Nach meiner Definition ist es so:

Definition:
Es seien [mm] Z_{1}, [/mm] ..., [mm] Z_{n} [/mm] stochastisch unabhängige, sandardnormalverteilte Zufallsgrößen. Die Wahrscheinlichkeitsverteilung der Zufallsgröße

[mm] X=Z_{1}^{2} [/mm] + ... + [mm] Z_{n}^{2} [/mm] = [mm] \summe_{i=1}^{n} Z_{i}^{2} [/mm]

heißt [mm] \chi^{2}-Verteilung [/mm] mit n Freiheitsgraden.

Die Verteilungsfunktion F sieht wie folgt aus:

[mm] F(x)=P(Z_{1}^{2} [/mm] + ... + [mm] Z_{n}^{2} \ge [/mm] x) x [mm] \in \IR [/mm]

Also ich verstehe dass diese [mm] \chi^{2}-Verteilung [/mm] sozusagen eine "Motation" der Normalverteilung ist. Die Zufallsvariablen sollen stochastisch unabh. und standardnormalverteilt sein.

dann quadriert man diese Zufallsvariablen und bildet dann daraus die Summe.

Aber was bringt mir das???

danke schonmal.

Grüße
Ali

Bezug
                        
Bezug
Sonderfälle chi quadrat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:16 Do 07.11.2013
Autor: schachuzipus

Hallo nochmal,

kurz zu 1), muss weg ..


> Danke schachuzipus,

>

> zunächst zu n=1:

>

> Für n=1 gilt:

>

> Laut Def.:

>

> [mm]X=Z_{1}^{2}=\summe_{i=1}^{1} Z_{i}^{2}[/mm]

Ja, die Summe lass mal weg. Und lt. Definition ist [mm] $Z_1$ [/mm] doch [mm] $\matcal [/mm] N(0,1)$-verteilt

Fertig
>

> [Frage: Was soll ich nun damit anfangen? Soll ich für Z
> etwas einsetzen?]

>

> Also hat diese [mm]\chi^{2}-Verteilung[/mm] einen Freiheitsgrad, da
> n=1.

>

> Nach Def. sieht die Verteilungsfunktion F für n=1 wie
> folgt aus:

Brauchst du nicht, diesen Fall gibt allein die Definition her ...

Gruß

schachuzipus

Bezug
                        
Bezug
Sonderfälle chi quadrat: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Do 07.11.2013
Autor: schachuzipus

Hallo nochmal,

zu 2.)

Der Transformationssatz für Dichten ist hier sehr hilfreich.

Vllt. hattet ihr Folgendes auch schon in den Vorlesungen:

(I) Ist [mm]X\sim\mathcal N(0,\sigma^2)[/mm], so ist [mm]X^2\sim\Gamma(2\sigma^2,1/2)[/mm]

(II) Sind [mm]Y,Z[/mm] unabh. und [mm]\Gamma(a,b), \Gamma(a,c)[/mm]-verteilt, so ist [mm]Y+Z[/mm] verteilt nach [mm]\Gamma(a,b+c)[/mm]

Wenn du das schon kennst, wende es auf [mm]\chi_2^2\sim Z_1^2+Z_2^2[/mm] mit [mm]Z_1,Z_2\sim \mathcal N(0,1)[/mm] an.

Wenn nicht, rechne (I) mit dem Trafosatz für Dichten nach, (II) mit dem Faltungssatz

Heraus kommt, dass [mm]\chi_2^2\sim\Gamma(2,1)[/mm] ist.

Schreibe die zugeh. Dichtefunktion mal hin und du siehst, dass es dieselbe ist wie für die Exponentialverteilung mit Parameter [mm]\lambda=1/2[/mm]


Gruß

schachuzipus

Bezug
                                
Bezug
Sonderfälle chi quadrat: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:48 So 10.11.2013
Autor: piriyaie

Also ich hab keine Ahnung aber ich habs mal so jetzt probiert... vllt stimmt der beweis ja?!

Also:

Sonderfall für n=2 : [mm] X_{2}^{2} [/mm] ist exponentialverteilt mit Parameter [mm] \lambda [/mm] = [mm] \bruch{1}{2}. [/mm]

Beweis:

Sei

N:= [mm] f_{\lambda}(x) [/mm] = [mm] \begin{cases} 0, & \mbox{falls } x \le 0 \\ \lambda e^{-\lambda x}, & \mbox{falls } x > 0 \end{cases} [/mm]

und

T:=f(x)=  [mm] \begin{cases} 0, & \mbox{falls } x \le 0 \\ K_{n} \cdot x^{\bruch{n-2}{2}} \cdot e^{-\bruch{x}{2}}, & \mbox{falls } x > 0 \end{cases} [/mm]

mit [mm] K_{n}=\bruch{1}{2^{\bruch{n}{2}} \Gamma(\bruch{n}{2})} [/mm]

[mm] \forall [/mm] n=2 [mm] \wedge [/mm] x [mm] \le [/mm] 0 [mm] \wedge \lambda=\bruch{1}{2} [/mm] gilt:

[mm] N=f_{\bruch{1}{2}}(x)=0 [/mm]

und

T=f(x)=0

[mm] \Rightarrow [/mm] N=T=0 [mm] \surd [/mm]

Desweiteren gilt [mm] \forall [/mm] n=2 [mm] \wedge [/mm] x > 0 [mm] \wedge \lambda=\bruch{1}{2}: [/mm]

[mm] N=f_{\bruch{1}{2}}(x)=\bruch{1}{2} \cdot e^{-\bruch{1}{2}x} [/mm]

und

[mm] T=f(x)=K_{2} \cdot x^{\bruch{2-2}{2}} \cdot e^{-\bruch{x}{2}} [/mm] = [mm] \bruch{1}{2^{\bruch{2}{2}}\Gamma(\bruch{2}{2})} \cdot x^{\bruch{0}{2}} \cdot e^{-\bruch{x}{2}} [/mm] = [mm] \bruch{1}{2^{1} \Gamma(1)} \cdot x^{0} \cdot e^{-\bruch{1}{2}x} [/mm] = [mm] \bruch{1}{2 \cdot 1} \cdot [/mm] 1 [mm] \cdot e^{-\bruch{1}{2}x} [/mm] = [mm] \bruch{1}{2} \cdot e^{-\bruch{1}{2}x} [/mm]

[mm] \Rightarrow N=T=\bruch{1}{2} e^{-\bruch{1}{2}x} \surd [/mm]

q.e.d.

Das sollte doch jetzt bewiesen sein oder???

Ich hab doch gezeigt, dass die Dichte die selbe ist. Muss ich das jetzt noch mit der Verteilungsfunktion auch zeigen???

Danke schonmal.

Grüße
Ali

Bezug
                                        
Bezug
Sonderfälle chi quadrat: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 12.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]