Spiegelung an einer Ebene < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:12 So 16.09.2007 | Autor: | holwo |
Aufgabe | Sei [mm]\sigma{}:\IR^{3}\rightarrow\IR^{3}[/mm] eine Spiegelung an der Ebene, die durch den Nullpunkt geht und senkrecht auf der Geraden g steht, die in Richtung des Vektors [mm] v=\vektor{1 \\ -2\\2} [/mm] zeigt. Geben Sie die zu [mm] \sigma [/mm] gehörende Matrix A bzgl. der Standardbasis an.
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hallo!
mal wieder eine Frage
Ich habe im Buch ein satz, der eine Spiegelung im Raum an einer Ebene durch O so beschreibt:
[mm] s(x)=\vec{x}-2(\vec{x}*\vec{n})\vec{n}
[/mm]
wobei [mm] \vec{n} [/mm] ein Normalenvektor der Ebene ist. Das ist auch logisch meiner meinung nach, da [mm] (\vec{x}*\vec{n})\vec{n} [/mm] die projektion von [mm] \vec{x} [/mm] auf [mm] \vec{n} [/mm] ist.
In der aufgabe ist [mm] \vec{v} [/mm] senkrecht zur Ebene, also ist [mm] \vec{v} [/mm] mein normalenvektor und ich habe:
[mm] \sigma(\vektor{1 \\0\\0})=\vektor{1 \\ 0 \\0}-2(\vektor{1 \\ 0 \\0}*\vektor{1 \\ -2 \\2})=\vektor{-1 \\ 4 \\-4}
[/mm]
So habe ich auch [mm] \sigma(\vektor{0 \\1\\0})=\vektor{4 \\-7\\8} [/mm] und
[mm] \sigma(\vektor{0 \\0\\1})=\vektor{-4 \\8\\-7}
[/mm]
Also wäre [mm] A=\pmat{ 1 & 4 & -1 \\ 4 & -7 & 8 \\-4 & 8 & -7 }
[/mm]
aber folgendes steht auf der musterlösung:
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]
Wieso? warum gibt es hier ein basiswechsel? und was ist falsch mit meinen Überlegungen?
Danke!
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich] Anhang Nr. 2 (Typ: jpg) [nicht öffentlich] Anhang Nr. 3 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:47 So 16.09.2007 | Autor: | Disap |
Moin jesus_edu.
Leider kann ich dir dazu nicht allzuviel sagen, vor allem nicht zu deinem Ansatz.
> Sei [mm]\sigma{}:\IR^{3}\rightarrow\IR^{3}[/mm] eine Spiegelung an
> der Ebene, die durch den Nullpunkt geht und senkrecht auf
> der Geraden g steht, die in Richtung des Vektors
> [mm]v=\vektor{1 \\ -2\\2}[/mm] zeigt. Geben Sie die zu [mm]\sigma[/mm]
> gehörende Matrix A bzgl. der Standardbasis an.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>
> Hallo!
>
> mal wieder eine Frage
> Ich habe im Buch ein satz, der eine Spiegelung im Raum an
> einer Ebene durch O so beschreibt:
> [mm]s(x)=\vec{x}-2(\vec{x}*\vec{n})\vec{n}[/mm]
> wobei [mm]\vec{n}[/mm] ein Normalenvektor der Ebene ist. Das ist
> auch logisch meiner meinung nach, da
> [mm](\vec{x}*\vec{n})\vec{n}[/mm] die projektion von [mm]\vec{x}[/mm] auf
> [mm]\vec{n}[/mm] ist.
> In der aufgabe ist [mm]\vec{v}[/mm] senkrecht zur Ebene, also ist
> [mm]\vec{v}[/mm] mein normalenvektor und ich habe:
> [mm]\sigma(\vektor{1 \\0\\0})=\vektor{1 \\ 0 \\0}-2(\vektor{1 \\ 0 \\0}*\vektor{1 \\ -2 \\2})=\vektor{-1 \\ 4 \\-4}[/mm]
>
> So habe ich auch [mm]\sigma(\vektor{0 \\1\\0})=\vektor{4 \\-7\\8}[/mm]
> und
> [mm]\sigma(\vektor{0 \\0\\1})=\vektor{-4 \\8\\-7}[/mm]
> Also wäre
> [mm]A=\pmat{ 1 & 4 & -1 \\ 4 & -7 & 8 \\-4 & 8 & -7 }[/mm]
>
> aber folgendes steht auf der musterlösung:
>
> [Dateianhang nicht öffentlich]
Das nachfolgende ist kurz falsch. Die dritte Spalte von S ist falsch.
> [Dateianhang nicht öffentlich]
> [Dateianhang nicht öffentlich]
>
> Wieso? warum gibt es hier ein basiswechsel? und was ist
> falsch mit meinen Überlegungen?
Das ist nach der Aufgabenstellung so. Du sollst die Matrix Matrix A bzgl. der Standardbasis angeben. Dann hast du die Basis B. Zu dieser Basis gibts die Matrix A'.
Und nun gilt
[mm] A_B' [/mm] = [mm] [S]^{-1} A_E [/mm] [S]
(Ich bin mir hier jetzt gar nicht so sicher, ob man das mit der Basis als Index schreibt, jedenfalls sollte dir diese Formel bekannt vorkommen)
Nun willst [mm] A_E [/mm] bestimmen, und dann gilt da
[mm] A_E [/mm] = [S] [mm] A_B' [S]^{-1}
[/mm]
Du hast aus den Augen verloren, dass du die Matrix bezüglich der Standardbasis E suchst.
MfG!
Disap
|
|
|
|
|
> Sei [mm]\sigma{}:\IR^{3}\rightarrow\IR^{3}[/mm] eine Spiegelung an
> der Ebene, die durch den Nullpunkt geht und senkrecht auf
> der Geraden g steht, die in Richtung des Vektors
> [mm]v=\vektor{1 \\ -2\\2}[/mm] zeigt. Geben Sie die zu [mm]\sigma[/mm]
> gehörende Matrix A bzgl. der Standardbasis an.
>
> Ich habe im Buch ein satz, der eine Spiegelung im Raum an
> einer Ebene durch O so beschreibt:
> [mm]s(x)=\vec{x}-2(\vec{x}*\vec{n})\vec{n}[/mm]
> wobei [mm]\vec{n}[/mm] ein Normalenvektor der Ebene ist. Das ist
> auch logisch meiner meinung nach, da
> [mm](\vec{x}*\vec{n})\vec{n}[/mm] die projektion von [mm]\vec{x}[/mm] auf
> [mm]\vec{n}[/mm] ist.
> In der aufgabe ist [mm]\vec{v}[/mm] senkrecht zur Ebene, also ist
> [mm]\vec{v}[/mm] mein normalenvektor und ich habe:
> [mm]\sigma(\vektor{1 \\0\\0})=\vektor{1 \\ 0 \\0}-2(\vektor{1 \\ 0 \\0}*\vektor{1 \\ -2 \\2})=\vektor{-1 \\ 4 \\-4}[/mm]
Hallo,
spätestens an dieser Stelle solltest Du ins Grübeln geraten: Dein Vektor [mm] \vektor{1 \\0\\0} [/mm] hat beim Spiegeln seine Länge deutlich verändert, was nur den Schluß zuläßt, daß hier etwas Gravierendes nicht stimmt...
Ich vermute, daß Du Dein Buch nicht richtig gelesen hast. [mm] \vec{n} [/mm] ist nicht irgendein Normalenvektor, sondern ein Normaleneinheitsvektor. Damit klappt's dann auch.
Ich rate Dir allerdings, Dich mit der Basiswechselgeschichte vertraut zu machen.
Der Gedanke: die Abbildungsmatrix wird zunächst durch eine dem Problem angemessene Basis dargestellt, hier durch eine Basis aus Eigenvektoren. Transformation in die Standardbasis ergibt dann die gesuchte Matrix.
Gruß v. Angela
|
|
|
|