Spin Quantenzahl < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:10 Sa 28.05.2011 | Autor: | sinalco |
Aufgabe | 1.) Handelt es sich bei dem Spin eines Elektrons um einen Vektor?
2.) Es ist überall zu lesen, dass der Spin die Werte +/- 1/2 annehmen kann. Was ist der Betrag? |
zu 1.) Hier verstehe ich nicht ob es sich um einen Vektor im ursprünglichen Sinne handelt
zu 2.) Ist das dann der Betrag der sich über s= h_quer * sqrt(s(s+1)) berechnen lässt? Habe auch schon gelesen, dass nur die z-Komponente des Spins die Werte +/- 1/2 annehmen kann - wie kann ich mir das denn vorstellen?
Außerdem verstehe ich nicht wie man auf die Werte für den Betrag von S= 1/2*sqrt(3) * h_quer kommt wenn man die Formel des Betrags die oben steht benutzt, da doch für s = -1/2 was negatives unter der Wurzel steht.
Ich wäre dankbar für einige Antworten
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:03 So 29.05.2011 | Autor: | Kroni |
Hi,
also man kann den Spinvektor definieren als
[mm]\vec{s} \equiv \pmat{ \langle s_x \rangle , \langle s_y \rangle , \langle s_z \rangle }[/mm]
wobei [mm]s_i[/mm] gerade der Spinoperator ist.
Jetzt wissen wir ja, dass die Operatoren nicht miteinander kommutieren, es gilt ja
[mm][s_x,s_y]=\mathrm{i}\hbar s_z[/mm]
d.h. man kann nicht den Spin in alle Richtungen gleichzeitig messen. Deshalb sucht man sich dann ja eine Richtung aus (die man meist mit [mm]z[/mm] bezeichnet) und fuerht dann zu dem Operator [mm]s_z[/mm] die Quantenzahl ein. Die zweite Quantenzahl ist dann die von [mm]s^2 = s_x^2+s_y^2+s_z^2[/mm]. Da [mm]s^2[/mm] mit allen anderen Spinoperatoren [mm]s_i[/mm] kommutiert, kann man also in unserem Falle den Eigenwert von [mm]s^2[/mm] und [mm]s_z[/mm] gleichzeitig messen, weshalb man dann einen Zustand charakterisiert durch die Angabe des Eigenwertes des Operators [mm]s^2[/mm] und dem von [mm]s_z[/mm].
> 1.) Handelt es sich bei dem Spin eines Elektrons um einen
> Vektor?
Was genau magst du jetzt unter einem Vektor verstehen? Ein Objekt, welches sich unter Transformationen des zugrundliegenden Raumes transformiert wie ein Vektor? Dann nein, denn wenn du den Spinvektor um [mm] $2\pi$ [/mm] rotierst, dann kommt nicht der selbe Spinvektor heraus, sondern er hat eine Phase bekommen und ist deshalb auch insbesondere nicht im 'normalen' karteischen Raum darstellbar (dies ist z.B. der Grund, warum man in der klassischen Mechanik solche Spins noch nicht sieht, weil dort der Drehimpuls ein Vektor ist...Wenn man anemlich versucht, im [mm] $\mathbbm{R}^3$ [/mm] die Eigenfunktionen zu den Drehimpulsoperatoren zu finden, so stellt man dann fest, dass man einen Anteil hat, der mit [mm] $\exp(\mathrm{i}m\phi)$ [/mm] geht, wobei $m$ der Eigenwert zu [mm] $l_z$ [/mm] ist. Da fordert man dann, dass das selbe herauskommen soll, wenn man entweder $phi$ oder [mm] $phi+2\pi$ [/mm] einsetzt, da das ja offensichtlich im [mm] $\mathbbm{R}^3$ [/mm] das selbe sein sollte. Wenn man jetzt aber z.B. fuer $m=1/2$ einsetzt, weil das dann ein 'halbzahliger' Drehimpuls ist, sieht man, dass [mm] $\exp(\mathrm{i}(\phi+2\pi)/2) [/mm] = [mm] \exp(\mathrm{i}\phi/2) \cdot \exp(\mathrm{i}\pi) [/mm] = - [mm] \exp(\mathrm{i}\phi/2)$ [/mm] herausbekommt, was ja dann, wegen des minus Zeichens, ungleich [mm] $\exp(\mathrm{i}\phi/2)$ [/mm] ist.)
>
> 2.) Es ist überall zu lesen, dass der Spin die Werte +/-
> 1/2 annehmen kann. Was ist der Betrag?
>
>
> zu 2.) Ist das dann der Betrag der sich über s= h_quer *
> sqrt(s(s+1)) berechnen lässt?
Ja. Der Spinbetrag ist der Eigenwert zum Spinoperator [mm] $s^2$. [/mm] Die Eigenwerte sind dann durch [mm] $\hbar^2 [/mm] s(s+1)$ gegeben, also kann man dann den 'Betrag' als Wurzel aus diesem Wert definieren.
>Habe auch schon gelesen,
> dass nur die z-Komponente des Spins die Werte +/- 1/2
> annehmen kann - wie kann ich mir das denn vorstellen?
Im Prinzip koennen alle Spinprojektionen in die x y oder z Richtung nur den Wert [mm] $\pm [/mm] 1/2$ annehmen. Da man aber nicht gleichzeitig in alle Richtungen die Spinprojektion messen kann, einigt man sich dann meist darauf, dass man die $z$-Komponente als 'besonders' herausgreift und diese Komponente dann misst.
Dass diese Komponente nur die Werte [mm] $\pm [/mm] 1/2$ annehmen kann, folgt aus der Drehimpulsalgebra. Da weiss man dann:
Die Eigenwerte von [mm] $L^2$ [/mm] sind gegeben durch [mm] $\hbar^2 [/mm] l(l+1)$ mit [mm] $l\ge [/mm] 0$, und die Eigenwerte von [mm] $l_z$ [/mm] sind dann gegeben durch $m$ wobei [mm] $-l\le [/mm] m [mm] \le [/mm] l$ gilt.
>
> Außerdem verstehe ich nicht wie man auf die Werte für den
> Betrag von S= 1/2*sqrt(3) * h_quer kommt wenn man die
> Formel des Betrags die oben steht benutzt, da doch für s =
> -1/2 was negatives unter der Wurzel steht.
Da musst du jetzt aufpassen: Wenn man den Eigenwert von [mm] $S^2$ [/mm] angibt, dann steht da ja [mm] $\hbar^2 [/mm] s(s+1)$. Hierbei kann $s$ dann nur positive Werte annehmen, also [mm] $s=0,1/2,1,3/2,\ldots$. [/mm] Nehmen wir jetzt an, dass $s=1/2$ sei, folgt ja sofort
[mm] $S^2 [/mm] = [mm] \hbar^2 (1/2)\cdot(3/2) [/mm] = [mm] \hbar^2 [/mm] 3/4$, also
$S = [mm] \frac{\hbar}{2}\sqrt{3}$.
[/mm]
Die Werte [mm] $\pm [/mm] 1/2$, die du meinst, sind die Eigenwerte zum Spinoperator in $z$-Richtung, also die Eigenwerte von [mm] $s_z$, [/mm] die dann die Werte [mm] $\pm [/mm] 1/2$ annehmen koennen.
Ich hoffe, ich habe dich jetzt nicht noch mehr verwirrt, aber ich wuerde dir empfehlen, die nochmal die Herleitung der Drehimpulsalgebra und der Operatorn [mm] $L^2$ [/mm] und [mm] $l_x,l_y,l_z$ [/mm] anzuschauen, dann sollte dir das mit den Eigenwerten von oben klar werden. Dann wuerde ich dir nochmal empfehlen, die das anzuschauen, wie man die Wellenfunktionen im Ortsraum berechnet, wo man dann sieht, dass an den halbzahligen Eigenwerten des Drehimpulsoperators etwas 'komisches' ist, naemlich dass die fuer halbzahlige Drehimpulse eine Phase bekommen, wenn man [mm] $\phi$ [/mm] um [mm] $2\pi$ [/mm] dreht (s.h. die kleine Rechnung oben).
Wenn du noch weitere Fragen hast, dann melde dich einfach nochmal :)
LG
Kroni
>
> Ich wäre dankbar für einige Antworten
>
|
|
|
|
|
das nenn ich mal ne typisch-ausführliche-Physiker-Antwort :D
PS: Bosonen haben ganzzahligen Spin ;) (damit das nicht in Vergessenheit gerät)
LG Scherzkrapferl
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:22 So 29.05.2011 | Autor: | sinalco |
Vielen Dank für die ausführliche Antwort. Ich werde mir das mal in Ruhe anschauen und die Tipps befolgen - eventuell kommen dann noch Rückfragen, so mühevoll wie du das beantwortet hast.
|
|
|
|