matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSqueeze-Algorithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Squeeze-Algorithmus
Squeeze-Algorithmus < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Squeeze-Algorithmus: Korrektur
Status: (Frage) überfällig Status 
Datum: 23:04 Do 13.05.2021
Autor: Mathe1404

Sei f eine Wahrscheinlichkeitsdichte mit

[mm] h_{1}(x) \leq [/mm] f(x) [mm] \leq h_{2}(x) [/mm]

für zwei reellwertige Funnktionen [mm] h_{1} [/mm] und [mm] h_{2}. [/mm]

Der Algorithmus lautet wie folgt:

(1) Erzeuge U [mm] \sim [/mm] U(0,1) und  X [mm] \sim [/mm] g. setze W = MUg(X)
(2) Falls W [mm] \leq h_{1}(X), [/mm] setze Y=X STOP
(3) Falls W > [mm] h_{2}(X), [/mm] gehe zu 1
(4) Falls  W [mm] \leq [/mm] f(X), setze Y=X STOP
(5) gehe zu 1

Definiere die Zufallsvariable [mm] \tau_{f} [/mm] durch

[mm] \tau_{f} [/mm] = [mm] \sum_{i=1}^{\tau} 1_\{ h_{1}(X_{i}) < W_{i} \leq h_{2}(X_{i}\})) [/mm]

---------------------------------------------------

Man darf Satz von Wald nutzen:

[mm] E(\sum_{i=1}^{\tau} \psi(X_{i}) [/mm] = [mm] E(\tau)E(\psi(X_{1})) [/mm]

falls [mm] X_{1},...,X_{n} [/mm] iid und [mm] \psi [/mm] messbar und [mm] \tau [/mm] eine Stoppzeit.

---------------------------------------

Es geht um den Erwartungswert von [mm] \tau_{f}. [/mm]

Stimmt es, dass dies die Anzahl an Vergleichen mit f darstellt?

Meine weiteren Ansätze: Ich habe bisher mit Hinweis

[mm] E(\tau_{f}) [/mm] = [mm] E(\tau) E(1_\{ h_{1}(X_{1}) < W_{1} \leq h_{2}(X_{1})\})) [/mm]

Stimmt das? Kann ich das so einfach in die Ungleichung übernehmen?

Es geht mir um den zweiten Term. Ist das nicht einfach die Wahrscheinlichkeit? Wenn ja, kann ich es doch als Differenz von zwei Wahrscheinlichkeiten schreiben oder?

Ich kriege dann z.B. für

[mm] P(MU_{1}g(X_{1}) \leq h_{2}(X_{1})) [/mm] = ... [mm] \frac{1}{M} \int h_{2}(x) [/mm] dx.

Kann das sein?

Vielen lieben Dank für jede Hilfe.

LG

        
Bezug
Squeeze-Algorithmus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 19.05.2021
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]