matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenStabilität von Systemen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Stabilität von Systemen
Stabilität von Systemen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilität von Systemen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:57 Mo 15.12.2008
Autor: jumape

Aufgabe
Wir haben das System:
x'(t)=1-x(t)-y(t)+x(t)z(t)
y'(t)=1-y(t)-z(t)+x(t)y(t)
z'(t)=1-z(t)-y(t)+y(t)z(t)

1. Ist das um (1,1,1) linearisierte System stabil oder instabil?
2. Ist der Gleichgewichtspunkt (1,1,1) des ursprünglichen Systems stabil oder instabil?

Das linearisierte System ist
[mm] \alpha'(t)=\pmat{-1+z & -1 & x \\ y & -1+x & -1\\ 0 & -1+z & -1+y}\alpha(t) [/mm]
Da muss man jetzt für (x,y,z)=(1,1,1) einsetzen und erhält dann  [mm] \pmat{0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 0} [/mm]
Diese Matrix hat die Eigenwerte 0, i, -i
Heißt das jetzt, dass das System stabil ist?, weil es zu allen Eigenwerten, wo der der realteil 0 ist alg. Vfh= geom.Vfh. hat?
Oder wie bestimmt man das?
Und was kann ich dann zu der Stabilität des Gleichgewichtspunktes sagen?
Wenn ich jetzt einen Eigenwert hätte mit Realteil >0  dann wäre das Sxstem doch instabil, wäre der Gleichgewichtspunkt dann auch direkt instabil?
Wie ist das Verhältnis zwischen diesen beiden Stabilitäten und wie bestimmt man sie?
Es wäre nett, wenn mir jemand ein paar meiner Fragen beantworten könnte, ich habe das mit der Stabilität nämlich leider nicht so richtig verstanden.


        
Bezug
Stabilität von Systemen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 18.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]