matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisStammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Stammfunktion
Stammfunktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:07 Do 16.05.2019
Autor: Stala

Aufgabe
Man prüfe, ob folgende Funktionen eine Stammfunktion besitzen:
f [mm] \colon \mathbb{C}\backslash [/mm] 0 [mm] \mapsto \mathbb{C} [/mm] f= [mm] \frac{e^z-1}{z} [/mm]
g [mm] \colon \mathbb{C}\backslash [/mm] 0 [mm] \mapsto \mathbb{C} [/mm] g= [mm] \frac{e^z-1}{z^2} [/mm]

Hallo liebes Forum,

vorweg, den Integralsatz oder Ähnliches habe ich nicht zur Verfügung. Ich kann die Existenz einer Stammfunktion nur beweisen, indem ich eine solche angebe oder zeige, dass das Integral über jeden geschlossenen Weg Null ergibt.

Meine Vermutung ist, dass f,g keine Stammfunktion besitzen, ich bräuchte als nur eine gschlossene Kurve, für die das Integral nicht Null wird. Aber alle versuchen scheitern daran, dass ich sehr unschöne Integral bekomme, die ich nicht lösen kann.

Ich dachte auch noch an [mm] (\gamma [/mm] ist Kreis um 0:

[mm] \int_{\gamma} [/mm] f(z) dz = [mm] \int_{\gamma} \frac{e^z}{z} [/mm] - [mm] \int_{\gamma} \frac{1}{z} [/mm] = [mm] \int_{\gamma} \frac{e^z}{z} [/mm] -2 [mm] \pi [/mm] i

Jetzt würde es ja reichen zu zeigen, dass  [mm] \int_{\gamma} \frac{e^z}{z} [/mm] nicht für jeden Kreisbogen den Wert 2 [mm] \pi [/mm] i annimmt.
Aber irgendwie finde ich das nicht. Das Wegintegral umformen hilft mir auch nicht weiter, da ich [mm] \int_{0}^{2 \pi }e^{e^{it}} [/mm] dtnicht integriert bekommen.

Kann mir jemand helfen?

Viele Grüße

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Do 16.05.2019
Autor: fred97


> Man prüfe, ob folgende Funktionen eine Stammfunktion
> besitzen:
>  f [mm]\colon \mathbb{C}\backslash[/mm] 0 [mm]\mapsto \mathbb{C}[/mm] f=
> [mm]\frac{e^z-1}{z}[/mm]
>  g [mm]\colon \mathbb{C}\backslash[/mm] 0 [mm]\mapsto \mathbb{C}[/mm] g=
> [mm]\frac{e^z-1}{z^2}[/mm]
>  Hallo liebes Forum,
>  
> vorweg, den Integralsatz oder Ähnliches habe ich nicht zur
> Verfügung. Ich kann die Existenz einer Stammfunktion nur
> beweisen, indem ich eine solche angebe oder zeige, dass das
> Integral über jeden geschlossenen Weg Null ergibt.
>  
> Meine Vermutung ist, dass f,g keine Stammfunktion besitzen,
> ich bräuchte als nur eine gschlossene Kurve, für die das
> Integral nicht Null wird. Aber alle versuchen scheitern
> daran, dass ich sehr unschöne Integral bekomme, die ich
> nicht lösen kann.
>  
> Ich dachte auch noch an [mm](\gamma[/mm] ist Kreis um 0:
>  
> [mm]\int_{\gamma}[/mm] f(z) dz = [mm]\int_{\gamma} \frac{e^z}{z}[/mm] -
> [mm]\int_{\gamma} \frac{1}{z}[/mm] = [mm]\int_{\gamma} \frac{e^z}{z}[/mm] -2
> [mm]\pi[/mm] i
>  
> Jetzt würde es ja reichen zu zeigen, dass  [mm]\int_{\gamma} \frac{e^z}{z}[/mm]
> nicht für jeden Kreisbogen den Wert 2 [mm]\pi[/mm] i annimmt.


Tut es aber. Nimm die Potenzreihe der Exponentialfunktion,  dividiere durch  z und integriere gliedweise,  dann solltest Du es sehen.

Die Funktion  f hat in 0 eine  hebbare  Singularität,  kann also auf ganz  [mm] \IC [/mm] zu einer holomorphen  Funktion fortgesetzt werden. Damit hat f eine Stammfunktion.

Zu g: integriere g über  einen Kreis um 0. Das  Integral wird  nicht = 0 ausfallen.
benutze wieder  die Potenzreihe und integriere gliedweise.






>  Aber irgendwie finde ich das nicht. Das Wegintegral
> umformen hilft mir auch nicht weiter, da ich [mm]\int_{0}^{2 \pi }e^{e^{it}}[/mm]
> dtnicht integriert bekommen.
>  
> Kann mir jemand helfen?
>  
> Viele Grüße


Bezug
                
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:06 Fr 17.05.2019
Autor: Stala

Cool Danke.

Mit der Idee ging es ja wirklich gut

VG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]